POJ 3071 Football 【概率DP】
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 3734 | Accepted: 1908 |
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared
the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value
on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i.
The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead
of float.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
Hint
In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
| P(2 wins) | = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4) = p21p34p23 + p21p43p24 = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396. |
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.
题意:这个题是给你一个2^N的一个概率矩阵p , p[i][j]用来表示第i队赢第j队的概率。足球比赛是依据编号由小到大来两两比赛的,问你最有可能最后赢的队伍编号。
分析:队伍两两之间进行比赛,直到得到Winner。这个过程是须要N层比赛的【我想不出什么高级的词汇了。就用层来说吧。语文不好,不要嘲笑~】,每一层有若干双 队伍 同一时候进行比赛。然后是依据编号两两比赛的。这个时候最好还是画出一个图出来,我们能够发现,这就是一个二叉树嘛。
首先。设状态 dp[i][j] 表示第i层比赛第j号队伍赢的概率。
然后,设状态转移方程:dp[i][j] = dp[i-1][j] * ∑(dp[i-1][k]*p[j][k]),ps:k∈(二叉树上(i,j)除了(i-1。j)的另外一个子节点下面的全部叶子节点的编号)。说得确实有点拗口,可是仅仅要画出图来。就很好理解。
接下来,考虑边界情况,显然dp[0][j] = 0。或者说dp[1][j] = p[j][(j-1)^1+1] 【第二种写法是dp[i][j] = p[j][j&1?
j+1:j-1],用哪种凭个人喜好吧】,j∈(1,1<<N)。
最后。仅仅须要遍历全部dp[N][j] ,j∈(1,1<<N),求最大的概率就可以。
/**
* Memory:444KB Time:79ms
* Author:__Xiong 2015/7/27
*/
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 7+1;
const int maxm = (1<<maxn);
int N,M,ans;
double pMax,p[maxm][maxm],dp[maxn][maxm];
int main()
{
//freopen("input.in","r",stdin);
while(~scanf("%d",&N))
{
if(N == -1) break;
M = (1<<N);
for(int i = 1; i <= M; i++)
{
for(int j = 1; j <= M; j++)
{
scanf("%lf",&p[i][j]);
}
}
memset(dp,0,sizeof(dp));
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= M; j++)
{
if(i == 1)
{
dp[1][j] = p[j][j&1?j+1:j-1];
continue;
}
for(int k = 1; k <= M; k++)
{
int a = (j-1)>>(i-1),b = (k-1)>>(i-1);
if(a&1) a--;
else a++;
if(a == b)
dp[i][j] += dp[i-1][j]*dp[i-1][k]*p[j][k];
}
}
}
pMax = 0;
ans = 0;
for(int i = 1; i <= M; i++)
{
if(pMax < dp[N][i])
{
ans = i;
pMax = dp[N][i];
}
}
printf("%d\n",ans); }
return 0;
}
另外。挂上基神的代码吧。
// 亲測:Memory:1080KB Time:79ms
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MX = 150 + 5;
#define For(i,x,y) for(int i=x;i<=y;i++)
#define Mem(x,y) memset(x,y,sizeof(x))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define root 1,n,1
int n;
double A[MX][MX];
double dp[MX << 2][MX];
void solve(int l, int r, int rt)
{
if(l == r)
{
dp[rt][l] = 1;
return;
}
int m = (l + r) >> 1;
solve(lson);
solve(rson);
For(x, l, r)
{
if(x <= m)
{
For(i, m + 1, r)
{
dp[rt][x] += dp[rt << 1 | 1][i] * A[x][i];
}
dp[rt][x] *= dp[rt << 1][x];
}
else
{
For(i, l, m)
{
dp[rt][x] += dp[rt << 1][i] * A[x][i];
}
dp[rt][x] *= dp[rt << 1 | 1][x];
}
}
}
int main()
{
//freopen("input.in", "r", stdin);
int n;
while(~scanf("%d", &n), n >= 0)
{
Mem(dp, 0);
n = 1 << n;
For(i, 1, n)
{
For(j, 1, n)
{
scanf("%lf", &A[i][j]);
}
}
solve(root);
double Max = 0;
int ans;
For(i, 1, n)
{
if(dp[1][i] > Max)
{
Max = dp[1][i];
ans = i;
}
}
printf("%d\n", ans);
}
return 0;
}
POJ 3071 Football 【概率DP】的更多相关文章
- poj 3071 Football (概率DP水题)
G - Football Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- POJ 3071 Football(概率DP)
题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...
- poj 3071 Football(概率dp)
id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...
- POJ 3071 Football (概率DP)
概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...
- POJ 3071 Football
很久以前就见过的...最基本的概率DP...除法配合位运算可以很容易的判断下一场要和谁比. from——Dinic算法 Football Time ...
- POJ3071:Football(概率DP)
Description Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2 ...
- POJ 3156 - Interconnect (概率DP+hash)
题意:给一个图,有些点之间已经连边,现在给每对点之间加边的概率是相同的,问使得整个图连通,加边条数的期望是多少. 此题可以用概率DP+并查集+hash来做. 用dp(i,j,k...)表示当前的每个联 ...
- poj 1322 Chocolate (概率dp)
///有c种不同颜色的巧克力.一个个的取.当发现有同样的颜色的就吃掉.去了n个后.到最后还剩m个的概率 ///dp[i][j]表示取了i个还剩j个的概率 ///当m+n为奇时,概率为0 # inclu ...
- [poj3071]football概率dp
题意:n支队伍两两进行比赛,求最有可能获得冠军的队伍. 解题关键:概率dp,转移方程:$dp[i][j] + = dp[i][j]*dp[i][k]*p[j][k]$表示第$i$回合$j$获胜的概率 ...
- POJ 3071 Football:概率dp
题目链接:http://poj.org/problem?id=3071 题意: 给定n,有2^n支队伍参加足球赛. 给你所有的p[i][j],表示队伍i打败队伍j的概率. 淘汰赛制.第一轮(1,2)两 ...
随机推荐
- hdu 1513(滚动数组)
Palindrome Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- java 获取当前系统时间
Java的Date获取时间函数都是deprecated 可以使用: https://stackoverflow.com/questions/5175728/how-to-get-the-current ...
- flutter演示项目:游侠客户端
使用flutter实现的游侠客户端. 还有一些页面没写,最主要的问题是无法解析html富文本. https://github.com/axel10/flutter_ali213_client_demo
- django web 自定义通用权限控制
需求:web系统有包含以下5个url,分别对于不同资源: 1.stu/add_stu/ 2.stu/upload_homework/ 3.stu/query_homework/ 4.stu/add_r ...
- [xunsearch] 在thinkphp中使用xunsearch
file: XunSearchController.class.php <?php namespace Home\Controller; include '/opt/xunsearch/sdk/ ...
- HDU 2035.人见人爱A^B-快速幂
人见人爱A^B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- 洛谷 P3927 SAC E#1 - 一道中档题 Factorial【数论//】
题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...
- 洛谷——P3913 车的攻击
P3913 车的攻击 题目描述 N \times NN×N 的国际象棋棋盘上有KK 个车,第ii个车位于第R_iRi行,第C_iCi 列.求至少被一个车攻击的格子数量. 车可以攻击所有同一行或者同 ...
- 分享Kali Linux 2017年第29周镜像文件
分享Kali Linux 2017年第29周镜像文件 Kali Linux官方于7月16日发布2017年的第29周镜像.这次维持了11个镜像文件的规模.默认的Gnome桌面的4个镜像,E17.KDE ...
- HDOJ 4961 Boring Sum
Discription Number theory is interesting, while this problem is boring. Here is the problem. Given a ...