四点之间最短路(spfa+优先队列+枚举优化)UESTC1955喜马拉雅山上的猴子
喜马拉雅山上的猴子
Time Limit: 1000 MS Memory Limit: 256 MB
Submit Status
余周周告诉我喜马拉雅山上有猴子,他们知道点石成金的方法。我不信,于是余周周带我去喜马拉雅山拜访猴子。
喜马拉雅山上有n个猴子聚落,不妨叫它们1,2,…n号聚落;它们之间有m条单向道路(这意味着如果一条路从1号聚落到2号聚落,那么你不能通过这条路从2号聚落到1号聚落),每条道路连接2个聚落,且拥有不同的长度。可能有两条道路的起点和终点相同,但没有一条道路的起点和终点是同一个聚落。
因为急切的想要知道点石成金的方法,余周周只想拜访四个猴子聚落,不妨按拜访顺序将它们记为A、B、C、D。当然,为了节省体力,余周周在这些城市(ABCD)之间旅行时会选择最短的路径。不过,喜马拉雅山上的风景不错,所以余周周想要多停留一会,让旅行过程当中经过的路径总长度最长。
余周周觉得自己制定旅行计划太麻烦,于是把任务交给了你。你需要帮她决定ABCD四个聚落的编号以及访问顺序,以满足余周周的要求。
Input
第一行两个整数n,m(4 ≤ n ≤ 1000, 3 ≤ m ≤ 2000), 表示喜马拉雅山上聚落的数量和单向道路的数量。
接下来m行,每行三个整数x,y,z( 1≤ x,y ≤ n, x≠y, 1 ≤ z ≤ 5000 ),表示从x到y有一条距离为z的单向道路。
输入数据保证题目有解。
Output
输出四个整数a,b,c,d,表示你选择的四个聚落的编号,按照访问顺序输出。
a,b,c,d应该各不相同。
如果有多组满足条件的答案,则输出任意一组答案。
Sample input and output
Sample Input | Sample Output |
---|---|
|
|
|
|
Hint
样例1:12,23,34之间的最短路距离都为1,总距离为3,显然最长。
样例2:可能有其他正确答案。
Source
2018 UESTC ACM Training for Graph Theory
题解:最短路问题,找出距离最短的4个点。可以利用spfa最短路解决。A,B,C,D 4个点,显然枚举B,C两点到其他点的最短距离,然后3段加起来,每次 保留最小值即可;可以利用优先队列优化,只要取出前3即可;
AC代码为:
#include<iostream>
<iostream>
#include<queue>
#include<algorithm>
#include<cstdio>
using namespace std;
const int INF = 50000000;
struct part {
int ends, data, next;
}; struct Info {
int id, v;
bool operator > (const Info &a) const
{
return a.v < v;
}
bool operator < (const Info &a) const
{
return a.v > v;
}
};
vector<Info> s[2000], s1[2000];
struct part e[3000];
int i, j, cnt, max1, n, m, x, y, z, ii, jj, a, b, c, d, v, dis[1010][1010], st[3000];
void combine(int x, int y, int z)
{
cnt += 1;
e[cnt].ends = y;
e[cnt].data = z;
e[cnt].next = st[x];
st[x] = cnt;
} void spfa(int t)
{
for (int i = 1; i <= n; i++) dis[t][i] = INF;
dis[t][t] = 0;
queue<int> Q;
Q.push(t);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = st[u]; i != -1; i = e[i].next)
{
int v = e[i].ends;
int w = e[i].data;
if (dis[t][v]>dis[t][u] + w)
{
dis[t][v] = dis[t][u] + w;
Q.push(v);
}
}
}
} int main()
{
cin >> n >> m;
for (i = 1; i <= n; i++)
st[i] = -1;
cnt = 0; for (i = 1; i <= m; i++)
{
cin >> x >> y >> z;
combine(x, y, z);
} for (i = 1; i <= n; i++) spfa(i); for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
if (dis[i][j] != INF) s[i].push_back(Info {j,dis[i][j]});
} for (j = 1; j <= n; j++)
{
for (i = 1; i <= n; i++)
if (dis[i][j] != INF) s1[j].push_back(Info {i,dis[i][j]});
}
for (i = 1; i <= n; i++)
{
sort(s[i].begin(), s[i].end(), greater<Info>());
sort(s1[i].begin(), s1[i].end(), greater<Info>());
}
max1 = -10000;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
if (i != j && dis[i][j] != INF)
{
v = 0;
for (size_t it = 0; it<s1[i].size(); it++)
{
for (size_t itt = 0; itt<s[j].size(); itt++)
if (s1[i][it].id != s[j][itt].id&&s1[i][it].id != i && s1[i][it].id != j && i != s[j][itt].id&&j != s[j][itt].id)
{
if (s1[i][it].v + dis[i][j] + s[j][itt].v>max1)
{
max1 = s1[i][it].v + dis[i][j] + s[j][itt].v;
a = s1[i][it].id;
b = i;
c = j;
d = s[j][itt].id;
}
v = 1;
break;
}
if (v == 1) break;
}
}
}
printf("%d %d %d %d\n", a, b, c, d);
return(0);
}
#include<queue>
#include<algorithm>
#include<cstdio>
using namespace std;
const int INF = 50000000;
struct part {
int ends, data, next;
}; struct Info {
int id, v;
bool operator > (const Info &a) const
{
return a.v < v;
}
bool operator < (const Info &a) const
{
return a.v > v;
}
};
vector<Info> s[2000], s1[2000];
struct part e[3000];
int i, j, cnt, max1, n, m, x, y, z, ii, jj, a, b, c, d, v, dis[1010][1010], st[3000];
void combine(int x, int y, int z)
{
cnt += 1;
e[cnt].ends = y;
e[cnt].data = z;
e[cnt].next = st[x];
st[x] = cnt;
} void spfa(int t)
{
for (int i = 1; i <= n; i++) dis[t][i] = INF;
dis[t][t] = 0;
queue<int> Q;
Q.push(t);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = st[u]; i != -1; i = e[i].next)
{
int v = e[i].ends;
int w = e[i].data;
if (dis[t][v]>dis[t][u] + w)
{
dis[t][v] = dis[t][u] + w;
Q.push(v);
}
}
}
} int main()
{
cin >> n >> m;
for (i = 1; i <= n; i++)
st[i] = -1;
cnt = 0; for (i = 1; i <= m; i++)
{
cin >> x >> y >> z;
combine(x, y, z);
} for (i = 1; i <= n; i++) spfa(i); for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
if (dis[i][j] != INF) s[i].push_back(Info {j,dis[i][j]});
} for (j = 1; j <= n; j++)
{
for (i = 1; i <= n; i++)
if (dis[i][j] != INF) s1[j].push_back(Info {i,dis[i][j]});
}
for (i = 1; i <= n; i++)
{
sort(s[i].begin(), s[i].end(), greater<Info>());
sort(s1[i].begin(), s1[i].end(), greater<Info>());
}
max1 = -10000;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
if (i != j && dis[i][j] != INF)
{
v = 0;
for (size_t it = 0; it<s1[i].size(); it++)
{
for (size_t itt = 0; itt<s[j].size(); itt++)
if (s1[i][it].id != s[j][itt].id&&s1[i][it].id != i && s1[i][it].id != j && i != s[j][itt].id&&j != s[j][itt].id)
{
if (s1[i][it].v + dis[i][j] + s[j][itt].v>max1)
{
max1 = s1[i][it].v + dis[i][j] + s[j][itt].v;
a = s1[i][it].id;
b = i;
c = j;
d = s[j][itt].id;
}
v = 1;
break;
}
if (v == 1) break;
}
}
}
printf("%d %d %d %d\n", a, b, c, d);
return(0);
}
四点之间最短路(spfa+优先队列+枚举优化)UESTC1955喜马拉雅山上的猴子的更多相关文章
- 有限制的最短路spfa+优先队列
poj1724 ROADS Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10751 Accepted: 3952 De ...
- 复习最短路 spfa+dijstra堆优化
题目很简单,, 但是wa了三次,, 用<vector>之前一定要记得clear()...简单说下 spfa的问题 和bell_forman有点类似 每次取出一个点 然后更新 并把更新了的节 ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- ACM学习历程—HDU 2112 HDU Today(map && spfa && 优先队列)
Description 经过锦囊相助,海东集团终于度过了危机,从此,HDU的发展就一直顺风顺水,到了2050年,集团已经相当规模了,据说进入了钱江肉丝经济开发区500强.这时候,XHD夫妇也退居了二线 ...
- 关于SPFA算法的优化方式
关于SPFA算法的优化方式 这篇随笔讲解信息学奥林匹克竞赛中图论部分的求最短路算法SPFA的两种优化方式.学习这两种优化算法需要有SPFA朴素算法的学习经验.在本随笔中SPFA朴素算法的相关知识将不予 ...
- 队列优化dijsktra(SPFA)的玄学优化
转载:大佬博客 最近想到了许多优化spfa的方法,这里想写个日报与大家探讨下 前置知识:spfa(不带任何优化) 由于使用较多 STLSTL ,本文中所有代码的评测均开启 O_2O2 优化 对一些数 ...
- SPFA的小优化
标签:闲扯 SPFA的小优化 1. 向队尾加入元素时,如果它比对首还优,就把把它直接和队首交换. 拿一个双端队列来实现 (手写 , head ,tail STLdeque亲测及其慢) 这个小优化其 ...
- SPFA(Bellman-Ford队列优化)
原理:队列+松弛操作 将源点加入队尾,每一步读取队头顶点u,并将队头顶点u出队(记得消除标记):将与点u相连的所有点v进行松弛操作,如果能更新距离(即令d[v]变小),那么就更新,另外,如果点v没有在 ...
- L - Subway(最短路spfa)
L - Subway(最短路spfa) You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. In ...
随机推荐
- Spring资源下载(官网)
Spring 资源jar包官网下载地址: 点击Spring
- Geometry 判断几何是否被另一个几何/线段分割成多段
如下图,如何判断几何多边形A被多边形B,切割为多段几何? 几何A被几何B切割 1. 获取几何A与几何B的交集C var intersectGeometry = new CombinedGeometry ...
- [java] 集合的架构——1张图表示
- nyoj 67-三角形面积 (海伦公式, 叉积)
67-三角形面积 内存限制:64MB 时间限制:3000ms 特判: No 通过数:8 提交数:13 难度:2 题目描述: 给你三个点,表示一个三角形的三个顶点,现你的任务是求出该三角形的面积 输入描 ...
- bash:加减乘除(bc、let)
bc *. echo "$2 * $2" | bc > file let 如果只是 let a=1 和 a=1,它们没有区别,但是 let 还可以用于带赋值的运算,例如 le ...
- ThreadLocal线程局部变量的使用
ThreadLocal: 线程局部变量 一).ThreadLocal的引入 用途:是解决多线程间并发访问的方案,不是解决数据共享的方案. 特点:每个线程提供变量的独立副本,所有的线程使用同一个Thre ...
- ubuntu 16.04 和 windows 10系统安装mysql 允许远程访问 | mysql user guide on ubuntu 16.04 and windows 10
本文首发于个人博客https://kezunlin.me/post/36e618e7/,欢迎阅读! mysql user guide on ubuntu 16.04 and windows 10 Pa ...
- Java Web登录界面
非常激动的开通了我的第一个博客,在这里希望大家能多多指点,相互学习. 一个简单的登录界面 首先我们先把这个登录分为三块: 一.数据库 数据库我用的是MYSQL: 二.前端 三.后台 1. 后台代码的 ...
- [译]Nginx入门引导教程
本文为[Beginner's Guide]译文,原文地址:http://nginx.org/en/docs/beginners_guide.html Guide 本教程基础的介绍了 nginx,以及能 ...
- sqlserver2008 R2 安装以后没有 sql server profiler
一些人在安装好SQL server 2008 r2或者从empress升级到enterprise或者开发版之后没有SQL server profiler功能,如果需要加装则应该找到自己的安装文件(部分 ...