本文目标:

  1. synchronized中实现线程等待和唤醒
  2. Condition简介及常用方法介绍及相关示例
  3. 使用Condition实现生产者消费者
  4. 使用Condition实现同步阻塞队列

Object对象中的wait(),notify()方法,用于线程等待和唤醒等待中的线程,大家应该比较熟悉,想再次了解的朋友可以移步到线程的基本操作

synchronized中等待和唤醒线程示例

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;

/**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo1 {
static Object lock = new Object(); public static class T1 extends Thread {
@Override
public void run() {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备获取锁!");
synchronized (lock) {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "获取锁成功!");
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "释放锁成功!");
}
} public static class T2 extends Thread {
@Override
public void run() {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备获取锁!");
synchronized (lock) {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "获取锁成功!");
lock.notify();
System.out.println(System.currentTimeMillis() + "," + this.getName() + " notify!");
try {
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备释放锁!");
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "释放锁成功!");
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
TimeUnit.SECONDS.sleep(5);
T2 t2 = new T2();
t2.setName("t2");
t2.start();
}
}

输出:

1:1563530109234,t1准备获取锁!
2:1563530109234,t1获取锁成功!
3:1563530114236,t2准备获取锁!
4:1563530114236,t2获取锁成功!
5:1563530114236,t2 notify!
6:1563530119237,t2准备释放锁!
7:1563530119237,t2释放锁成功!
8:1563530119237,t1释放锁成功!

代码结合输出的结果我们分析一下:

  1. 线程t1先获取锁,然后调用了wait()方法将线程置为等待状态,然后会释放lock的锁
  2. 主线程等待5秒之后,启动线程t2,t2获取到了锁,结果中1、3行时间相差5秒左右
  3. t2调用lock.notify()方法,准备将等待在lock上的线程t1唤醒,notify()方法之后又休眠了5秒,看一下输出的5、8可知,notify()方法之后,t1并不能立即被唤醒,需要等到t2将synchronized块执行完毕,释放锁之后,t1才被唤醒
  4. wait()方法和notify()方法必须放在同步块内调用(synchronized块内),否则会报错

Condition使用简介

在了解Condition之前,需要先了解一下重入锁ReentrantLock,可以移步到:JUC中的ReentranLock

任何一个java对象都天然继承于Object类,在线程间实现通信的往往会应用到Object的几个方法,比如wait()、wait(long timeout)、wait(long timeout, int nanos)与notify()、notifyAll()几个方法实现等待/通知机制,同样的, 在java Lock体系下依然会有同样的方法实现等待/通知机制。

从整体上来看Object的wait和notify/notify是与对象监视器配合完成线程间的等待/通知机制,而Condition与Lock配合完成等待通知机制,前者是java底层级别的,后者是语言级别的,具有更高的可控制性和扩展性。两者除了在使用方式上不同外,在功能特性上还是有很多的不同:

  1. Condition能够支持不响应中断,而通过使用Object方式不支持
  2. Condition能够支持多个等待队列(new 多个Condition对象),而Object方式只能支持一个
  3. Condition能够支持超时时间的设置,而Object不支持

Condition由ReentrantLock对象创建,并且可以同时创建多个,Condition接口在使用前必须先调用ReentrantLock的lock()方法获得锁,之后调用Condition接口的await()将释放锁,并且在该Condition上等待,直到有其他线程调用Condition的signal()方法唤醒线程,使用方式和wait()、notify()类似。

示例代码:

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo2 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备获取锁!");
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "获取锁成功!");
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "释放锁成功!");
}
} public static class T2 extends Thread {
@Override
public void run() {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备获取锁!");
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + "获取锁成功!");
condition.signal();
System.out.println(System.currentTimeMillis() + "," + this.getName() + " signal!");
try {
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "准备释放锁!");
} finally {
lock.unlock();
}
System.out.println(System.currentTimeMillis() + "," + this.getName() + "释放锁成功!");
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
TimeUnit.SECONDS.sleep(5);
T2 t2 = new T2();
t2.setName("t2");
t2.start();
}
}

输出:

1563532185827,t1准备获取锁!
1563532185827,t1获取锁成功!
1563532190829,t2准备获取锁!
1563532190829,t2获取锁成功!
1563532190829,t2 signal!
1563532195829,t2准备释放锁!
1563532195829,t2释放锁成功!
1563532195829,t1释放锁成功!

输出的结果和使用synchronized关键字的实例类似。

Condition.await()方法和Object.wait()方法类似,当使用Condition.await()方法时,需要先获取Condition对象关联的ReentrantLock的锁,在Condition.await()方法被调用时,当前线程会释放这个锁,并且当前线程会进行等待(处于阻塞状态)。在signal()方法被调用后,系统会从Condition对象的等待队列中唤醒一个线程,一旦线程被唤醒,被唤醒的线程会尝试重新获取锁,一旦获取成功,就可以继续执行了。因此,在signal被调用后,一般需要释放相关的锁,让给其他被唤醒的线程,让他可以继续执行。

Condition常用方法

Condition接口提供的常用方法有:

和Object中wait类似的方法

  1. void await() throws InterruptedException:当前线程进入等待状态,如果其他线程调用condition的signal或者signalAll方法并且当前线程获取Lock从await方法返回,如果在等待状态中被中断会抛出被中断异常;
  2. long awaitNanos(long nanosTimeout):当前线程进入等待状态直到被通知,中断或者超时
  3. boolean await(long time, TimeUnit unit) throws InterruptedException:同第二种,支持自定义时间单位,false:表示方法超时之后自动返回的,true:表示等待还未超时时,await方法就返回了(超时之前,被其他线程唤醒了)
  4. boolean awaitUntil(Date deadline) throws InterruptedException:当前线程进入等待状态直到被通知,中断或者到了某个时间
  5. void awaitUninterruptibly();:当前线程进入等待状态,不会响应线程中断操作,只能通过唤醒的方式让线程继续

和Object的notify/notifyAll类似的方法

  1. void signal():唤醒一个等待在condition上的线程,将该线程从等待队列中转移到同步队列中,如果在同步队列中能够竞争到Lock则可以从等待方法中返回。
  2. void signalAll():与1的区别在于能够唤醒所有等待在condition上的线程

Condition.await()过程中被打断

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo4 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
lock.lock();
try {
condition.await();
} catch (InterruptedException e) {
System.out.println("中断标志:" + this.isInterrupted());
e.printStackTrace();
} finally {
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
TimeUnit.SECONDS.sleep(2);
//给t1线程发送中断信号
System.out.println("1、t1中断标志:" + t1.isInterrupted());
t1.interrupt();
System.out.println("2、t1中断标志:" + t1.isInterrupted());
}
}

输出:

1、t1中断标志:false
2、t1中断标志:true
中断标志:false
java.lang.InterruptedException
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.reportInterruptAfterWait(AbstractQueuedSynchronizer.java:2014)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2048)
at com.itsoku.chat09.Demo4$T1.run(Demo4.java:19)

调用condition.await()之后,线程进入阻塞中,调用t1.interrupt(),给t1线程发送中断信号,await()方法内部会检测到线程中断信号,然后触发InterruptedException异常,线程中断标志被清除。从输出结果中可以看出,线程t1中断标志的变换过程:false->true->false

await(long time, TimeUnit unit)超时之后自动返回

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo5 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",start");
boolean r = condition.await(2, TimeUnit.SECONDS);
System.out.println(r);
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",end");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
}
}

输出:

1563541624082,t1,start
false
1563541626085,t1,end

t1线程等待2秒之后,自动返回继续执行,最后await方法返回false,await返回false表示超时之后自动返回

await(long time, TimeUnit unit)超时之前被唤醒

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo6 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",start");
boolean r = condition.await(5, TimeUnit.SECONDS);
System.out.println(r);
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",end");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
//休眠1秒之后,唤醒t1线程
TimeUnit.SECONDS.sleep(1);
lock.lock();
try {
condition.signal();
} finally {
lock.unlock();
}
}
}

输出:

1563542046046,t1,start
true
1563542047048,t1,end

t1线程中调用condition.await(5, TimeUnit.SECONDS);方法会释放锁,等待5秒,主线程休眠1秒,然后获取锁,之后调用signal()方法唤醒t1,输出结果中发现await后过了1秒(1、3行输出结果的时间差),await方法就返回了,并且返回值是true。true表示await方法超时之前被其他线程唤醒了。

long awaitNanos(long nanosTimeout)超时返回

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo7 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",start");
long r = condition.awaitNanos(TimeUnit.SECONDS.toNanos(5));
System.out.println(r);
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",end");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
}
}

输出:

1563542547302,t1,start
-258200
1563542552304,t1,end

awaitNanos参数为纳秒,可以调用TimeUnit中的一些方法将时间转换为纳秒。

t1调用await方法等待5秒超时返回,返回结果为负数,表示超时之后返回的。

waitNanos(long nanosTimeout)超时之前被唤醒

package com.itsoku.chat09;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class Demo8 {
static ReentrantLock lock = new ReentrantLock();
static Condition condition = lock.newCondition(); public static class T1 extends Thread {
@Override
public void run() {
lock.lock();
try {
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",start");
long r = condition.awaitNanos(TimeUnit.SECONDS.toNanos(5));
System.out.println(r);
System.out.println(System.currentTimeMillis() + "," + this.getName() + ",end");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException {
T1 t1 = new T1();
t1.setName("t1");
t1.start();
//休眠1秒之后,唤醒t1线程
TimeUnit.SECONDS.sleep(1);
lock.lock();
try {
condition.signal();
} finally {
lock.unlock();
}
}
}

输出:

1563542915991,t1,start
3999988500
1563542916992,t1,end

t1中调用await休眠5秒,主线程休眠1秒之后,调用signal()唤醒线程t1,await方法返回正数,表示返回时距离超时时间还有多久,将近4秒,返回正数表示,线程在超时之前被唤醒了。

其他几个有参的await方法和无参的await方法一样,线程调用interrupt()方法时,这些方法都会触发InterruptedException异常,并且线程的中断标志会被清除。

同一个锁支持创建多个Condition

使用两个Condition来实现一个阻塞队列的例子:

package com.itsoku.chat09;

import java.util.LinkedList;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; /**
* 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!
*/
public class BlockingQueueDemo<E> {
int size;//阻塞队列最大容量 ReentrantLock lock = new ReentrantLock(); LinkedList<E> list = new LinkedList<>();//队列底层实现 Condition notFull = lock.newCondition();//队列满时的等待条件
Condition notEmpty = lock.newCondition();//队列空时的等待条件 public BlockingQueueDemo(int size) {
this.size = size;
} public void enqueue(E e) throws InterruptedException {
lock.lock();
try {
while (list.size() == size)//队列已满,在notFull条件上等待
notFull.await();
list.add(e);//入队:加入链表末尾
System.out.println("入队:" + e);
notEmpty.signal(); //通知在notEmpty条件上等待的线程
} finally {
lock.unlock();
}
} public E dequeue() throws InterruptedException {
E e;
lock.lock();
try {
while (list.size() == 0)//队列为空,在notEmpty条件上等待
notEmpty.await();
e = list.removeFirst();//出队:移除链表首元素
System.out.println("出队:" + e);
notFull.signal();//通知在notFull条件上等待的线程
return e;
} finally {
lock.unlock();
}
} public static void main(String[] args) {
BlockingQueueDemo<Integer> queue = new BlockingQueueDemo<>(2);
for (int i = 0; i < 10; i++) {
int data = i;
new Thread(new Runnable() {
@Override
public void run() {
try {
queue.enqueue(data);
} catch (InterruptedException e) { }
}
}).start();
}
for (int i = 0; i < 10; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
Integer data = queue.dequeue();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
}
}
}

代码非常容易理解,创建了一个阻塞队列,大小为3,队列满的时候,会被阻塞,等待其他线程去消费,队列中的元素被消费之后,会唤醒生产者,生产数据进入队列。上面代码将队列大小置为1,可以实现同步阻塞队列,生产1个元素之后,生产者会被阻塞,待消费者消费队列中的元素之后,生产者才能继续工作。

Object的监视器方法与Condition接口的对比

对比项 Object 监视器方法 Condition
前置条件 获取对象的锁 调用Lock.lock获取锁,调用Lock.newCondition()获取Condition对象
调用方式 直接调用,如:object.wait() 直接调用,如:condition.await()
等待队列个数 一个 多个,使用多个condition实现
当前线程释放锁并进入等待状态 支持 支持
当前线程释放锁进入等待状态中不响应中断 不支持 支持
当前线程释放锁并进入超时等待状态 支持 支持
当前线程释放锁并进入等待状态到将来某个时间 不支持 支持
唤醒等待队列中的一个线程 支持 支持
唤醒等待队列中的全部线程 支持 支持

总结

  1. 使用condition的步骤:创建condition对象,获取锁,然后调用condition的方法
  2. 一个ReentrantLock支持床多个condition对象
  3. void await() throws InterruptedException;方法会释放锁,让当前线程等待,支持唤醒,支持线程中断
  4. void awaitUninterruptibly();方法会释放锁,让当前线程等待,支持唤醒,不支持线程中断
  5. long awaitNanos(long nanosTimeout) throws InterruptedException;参数为纳秒,此方法会释放锁,让当前线程等待,支持唤醒,支持中断。超时之后返回的,结果为负数;超时之前返回的,结果为正数(表示返回时距离超时时间相差的纳秒数)
  6. boolean await(long time, TimeUnit unit) throws InterruptedException;方法会释放锁,让当前线程等待,支持唤醒,支持中断。超时之后返回的,结果为false;超时之前返回的,结果为true
  7. boolean awaitUntil(Date deadline) throws InterruptedException;参数表示超时的截止时间点,方法会释放锁,让当前线程等待,支持唤醒,支持中断。超时之后返回的,结果为false;超时之前返回的,结果为true
  8. void signal();会唤醒一个等待中的线程,然后被唤醒的线程会被加入同步队列,去尝试获取锁
  9. void signalAll();会唤醒所有等待中的线程,将所有等待中的线程加入同步队列,然后去尝试获取锁

java高并发系列

java高并发系列连载中,总计估计会有四五十篇文章,可以关注公众号:javacode2018,获取最新文章。

java高并发系列 - 第13天:JUC中的Condition对象的更多相关文章

  1. 跟着阿里p7一起学java高并发 - 第19天:JUC中的Executor框架详解1,全面掌握java并发核心技术

    这是java高并发系列第19篇文章. 本文主要内容 介绍Executor框架相关内容 介绍Executor 介绍ExecutorService 介绍线程池ThreadPoolExecutor及案例 介 ...

  2. java高并发系列 - 第12天JUC:ReentrantLock重入锁

    java高并发系列 - 第12天JUC:ReentrantLock重入锁 本篇文章开始将juc中常用的一些类,估计会有十来篇. synchronized的局限性 synchronized是java内置 ...

  3. java高并发系列 - 第14天:JUC中的LockSupport工具类,必备技能

    这是java高并发系列第14篇文章. 本文主要内容: 讲解3种让线程等待和唤醒的方法,每种方法配合具体的示例 介绍LockSupport主要用法 对比3种方式,了解他们之间的区别 LockSuppor ...

  4. java高并发系列 - 第15天:JUC中的Semaphore,最简单的限流工具类,必备技能

    这是java高并发系列第15篇文章 Semaphore(信号量)为多线程协作提供了更为强大的控制方法,前面的文章中我们学了synchronized和重入锁ReentrantLock,这2种锁一次都只能 ...

  5. java高并发系列 - 第16天:JUC中等待多线程完成的工具类CountDownLatch,必备技能

    这是java高并发系列第16篇文章. 本篇内容 介绍CountDownLatch及使用场景 提供几个示例介绍CountDownLatch的使用 手写一个并行处理任务的工具类 假如有这样一个需求,当我们 ...

  6. java高并发系列 - 第17天:JUC中的循环栅栏CyclicBarrier常见的6种使用场景及代码示例

    这是java高并发系列第17篇. 本文主要内容: 介绍CyclicBarrier 6个示例介绍CyclicBarrier的使用 对比CyclicBarrier和CountDownLatch Cycli ...

  7. java高并发系列 - 第20天:JUC中的Executor框架详解2之ExecutorCompletionService

    这是java高并发系列第20篇文章. 本文内容 ExecutorCompletionService出现的背景 介绍CompletionService接口及常用的方法 介绍ExecutorComplet ...

  8. java高并发系列 - 第21天:java中的CAS操作,java并发的基石

    这是java高并发系列第21篇文章. 本文主要内容 从网站计数器实现中一步步引出CAS操作 介绍java中的CAS及CAS可能存在的问题 悲观锁和乐观锁的一些介绍及数据库乐观锁的一个常见示例 使用ja ...

  9. java高并发系列 - 第22天:java中底层工具类Unsafe,高手必须要了解

    这是java高并发系列第22篇文章,文章基于jdk1.8环境. 本文主要内容 基本介绍. 通过反射获取Unsafe实例 Unsafe中的CAS操作 Unsafe中原子操作相关方法介绍 Unsafe中线 ...

随机推荐

  1. Git实用指南

    个人整理的一些Git概念和命令,可以速查或者快速解决某些方面的问题 一.精简入门 1.克隆仓库 克隆仓库会下载仓库完整的文件.分支和历史记录 git clone [<options>] [ ...

  2. python-16-初识函数

    前言 以前写的python代码都是像记流水账一样,那么函数时什么额?它可以在任何需要它的地方进行调用,函数分为: 内置函数,print(),len() 自定义函数 一.自定义函数 1.我们都知道内置函 ...

  3. 自己开发的网站压力测试(阿里云1M带宽)

    背景 项目采用微服务架构设计,独立商城系统,博客系统,搜索系统,sso单点系统部署在docker环境下 商城系统(django) 博客系统(flask) 搜索系统(es+flask+restful) ...

  4. c++实现通讯录管理系统(控制台版)

    c++实现通讯录管理系统(控制台版) 此项目适合c++初学者,针对c++基础知识,涉及到变量.结构体定义使用.数组定义使用.指针定义使用等. 运行之后的结果如下: 代码: #include <i ...

  5. ubuntu上编译和使用easy_profiler对C++程序进行性能分析

    本文首发于个人博客https://kezunlin.me/post/91b7cf13/,欢迎阅读最新内容! tutorial to compile and use esay profiler with ...

  6. 工作笔记 之 Python应用技术

    python socket编程详细介绍 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket,建立网络通信连接至少要一对端口号(socket). Socket本质是 ...

  7. iOS的常用类库

    target 'NewCompass' do #UI通用 pod 'SVProgressHUD' pod 'MJRefresh' pod 'SnapKit' #pod 'RTRootNavigatio ...

  8. 基于Spring Boot+Spring Security+JWT+Vue前后端分离的开源项目

    一.前言 最近整合Spring Boot+Spring Security+JWT+Vue 完成了一套前后端分离的基础项目,这里把它开源出来分享给有需要的小伙伴们 功能很简单,单点登录,前后端动态权限配 ...

  9. 【nodejs原理&源码赏析(6)】深度剖析cluster模块源码与node.js多进程(下)

    目录 一. 引言 二.server.listen方法 三.cluster._getServer( )方法 四.跨进程通讯工具方法Utils 五.act:queryServer消息 六.轮询调度Roun ...

  10. 微信小程序之左右布局

    本文以一个简单的小例子,简述在微信小程序开发中左右布局功能的实现方式,主要涉及scroll-view ,列表数据绑定,及简单样式等内容,仅供学习分享使用. 概述 在微信小程序开发中,左右分栏(左边显示 ...