《ElasticSearch6.x实战教程》之简单搜索、Java客户端(上)
第五章-简单搜索
关注公众号:CoderBuff,回复“es”获取《ElasticSearch6.x实战教程》完整版PDF。
众里寻他千百度
搜索是ES的核心,本节讲解一些基本的简单的搜索。
掌握ES搜索查询的RESTful的API犹如掌握关系型数据库的SQL语句,尽管Java客户端API为我们不需要我们去实际编写RESTful的API,但在生产环境中,免不了在线上执行查询语句做数据统计供产品经理等使用。
数据准备
首先创建一个名为user的Index,并创建一个student的Type,Mapping映射一共有如下几个字段:
创建名为user的Index
PUT http://localhost:9200/user
创建名为student的Type,且指定字段name和address的分词器为
ik_smart
。POST http://localhost:9200/user/student/_mapping
{
"properties":{
"name":{
"type":"text",
"analyzer":"ik_smart"
},
"age":{
"type":"short"
}
}
}
经过上一章分词的学习我们把text
类型都指定为ik_smart
分词器。
插入以下数据。
POST localhost:9200/user/student
{
"name":"kevin",
"age":25
}
POST localhost:9200/user/student
{
"name":"kangkang",
"age":26
}
POST localhost:9200/user/student
{
"name":"mike",
"age":22
}
POST localhost:9200/user/student
{
"name":"kevin2",
"age":25
}
POST localhost:9200/user/student
{
"name":"kevin yu",
"age":21
}
按查询条件数量维度
无条件搜索
GET http://localhost:9200/user/student/_search?pretty
查看索引user的student类型数据,得到刚刚插入的数据返回:
单条件搜索
ES查询主要分为term
精确搜索、match
模糊搜索。
term精确搜索
我们用term
搜索name为“kevin”的数据。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"term":{
"name":"kevin"
}
}
}
既然term
是精确搜索,按照非关系型数据库的理解来讲就等同于=
,那么搜索结果也应该只包含1条数据。然而出乎意料的是,搜索结果出现了两条数据:name="kevin"和name="keivin yu",这看起来似乎是进行的模糊搜索,但又没有搜索出name="kevin2"的数据。我们先继续观察match
的搜索结果。
match模糊搜索
同样,搜索name为“kevin”的数据。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"match":{
"name":"kevin"
}
}
}
match
的搜索结果竟然仍然是两条数据:name="kevin"和name="keivin yu"。同样,name="kevin2"也没有出现在搜索结果中。
原因在于term
和match
的精确和模糊针对的是搜索词而言,term
搜索不会将搜索词进行分词后再搜索,而match
则会将搜索词进行分词后再搜索。例如,我们对name="kevin yu"进行搜索,由于term
搜索不会对搜索词进行搜索,所以它进行检索的是"kevin yu"这个整体,而match
搜索则会对搜索词进行分词搜索,所以它进行检索的是包含"kevin"和"yu"的数据。而name字段是text
类型,且它是按照ik_smart
进行分词,就算是"kevin yu"这条数据由于被分词后变成了"kevin"和"yu",所以term
搜索不到任何结果。
如果一定要用term
搜索name="kevin yu",结果出现"kevin yu",办法就是在定义映射Mapping时就为该字段设置一个keyword
类型。
为了下文的顺利进行,删除DELETE http:localhost:9200/user/student
重新按照开头创建索引以及插入数据吧。唯一需要修改的是在定义映射Mapping时,name字段修改为如下所示:
{
"properties":{
"name":{
"type":"text",
"analyzer":"ik_smart",
"fields":{
"keyword":{
"type":"keyword",
"ignore_abore":256
}
}
},
"age":{
"type":integer
}
}
}
待我们重新创建好索引并插入数据后,此时再按照term
搜索name="kevin yu"。
POST http://localhost:9200/user/student/_search
{
"query":{
"term":{
"name.keyword":"kevin yu"
}
}
}
返回一条name="kevin yu"的数据。按照match
搜索同样出现name="kevin yu",因为name.keyword无论如何都不会再分词。
在已经建立索引且定义好映射Mapping的情况下,如果直接修改name字段,此时能修改成功,但是却无法进行查询,这与ES底层实现有关,如果一定要修改要么是新增字段,要么是重建索引。
所以,与其说match
是模糊搜索,倒不如说它是分词搜索,因为它会将搜索关键字分词;与其将term
称之为模糊搜索,倒不如称之为不分词搜索,因为它不会将搜索关键字分词。
match
查询还有很多更为高级的查询方式:match_phrase
短语查询,match_phrase_prefix
短语匹配查询,multi_match
多字段查询等。将在复杂搜索一章中详细介绍。
类似like的模糊搜索
wildcard
通配符查询。
POST http://localhost:9200/user/student/_search?pretty
{
"query": {
"wildcard": {
"name": "*kevin*"
}
}
}
ES返回结果包括name="kevin",name="kevin2",name="kevin yu"。
fuzzy更智能的模糊搜索
fuzzy也是一个模糊查询,它看起来更加”智能“。它类似于搜狗输入法中允许语法错误,但仍能搜出你想要的结果。例如,我们查询name等于”kevin“的文档时,不小心输成了”kevon“,它仍然能查询出结构。
POST http://localhost:9200/user/student/_search?pretty
{
"query": {
"fuzzy": {
"name": "kevin"
}
}
}
ES返回结果包括name="kevin",name="kevin yu"。
多条件搜索
上文介绍了单个条件下的简单搜索,并且介绍了相关的精确和模糊搜索(分词与不分词)。这部分将介绍多个条件下的简单搜索。
当搜索需要多个条件时,条件与条件之间的关系有”与“,”或“,“非”,正如非关系型数据库中的”and“,”or“,“not”。
在ES中表示”与“关系的是关键字must
,表示”或“关系的是关键字should
,还有表示表示”非“的关键字must_not
。
must
、should
、must_not
在ES中称为bool
查询。当有多个查询条件进行组合查询时,此时需要上述关键字配合上文提到的term
,match
等。
- 精确查询(
term
,搜索关键字不分词)name="kevin"且age="25"的学生。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"bool":{
"must":[{
"term":{
"name.keyword":"kevin"
}
},{
"term":{
"age":25
}
}]
}
}
}
返回name="kevin"且age="25"的数据。
- 精确查询(
term
,搜索关键字不分词)name="kevin"或age="21"的学生。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"bool":{
"should":[{
"term":{
"name.keyword":"kevin"
}
},{
"term":{
"age":21
}
}]
}
}
}
返回name="kevin",age=25和name="kevin yu",age=21的数据
- 精确查询(
term
,搜索关键字不分词)name!="kevin"且age="25"的学生。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"bool":{
"must":[{
"term":{
"age":25
}
}],
"must_not":[{
"term":{
"name.keyword":"kevin"
}
}]
}
}
}
返回name="kevin2"的数据。
如果查询条件中同时包含must
、should
、must_not
,那么它们三者是"且"的关系
多条件查询中查询逻辑(must
、should
、must_not
)与查询精度(term
、match
)配合能组合成非常丰富的查询条件。
按等值、范围查询维度
上文中讲到了精确查询、模糊查询,已经"且","或","非"的查询。基本上都是在做等值查询,实际查询中还包括,范围(大于小于)查询(range
)、存在查询(exists
)、~不存在查询(missing
)。
范围查询
范围查询关键字range
,它包括大于gt
、大于等于gte
、小于lt
、小于等于lte
。
- 查询age>25的学生。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"range":{
"age":{
"gt":25
}
}
}
}
返回name="kangkang"的数据。
- 查询age >= 21且age < 26的学生。
POST http://localhost:9200/user/search/_search?pretty
{
"query":{
"range":{
"age":{
"gte":21,
"lt":25
}
}
}
}
查询age >= 21 且 age < 26且name="kevin"的学生
POST http://localhost:9200/user/search/_search?pretty
{
"query":{
"bool":{
"must":[{
"term":{
"name":"kevin"
}
},{
"range":{
"age":{
"gte":21,
"lt":25
}
}
}]
}
}
}
存在查询
存在查询意为查询是否存在某个字段。
查询存在name字段的数据。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"exists":{
"field":"name"
}
}
}
不存在查询
不存在查询顾名思义查询不存在某个字段的数据。在以前ES有missing
表示查询不存在的字段,后来的版本中由于must not
和exists
可以组合成missing
,故去掉了missing
。
查询不存在name字段的数据。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"bool":{
"must_not":{
"exists":{
"field":"name"
}
}
}
}
}
分页搜索
谈到ES的分页永远都绕不开深分页的问题。但在本章中暂时避开这个问题,只说明在ES中如何进行分页查询。
ES分页查询包含from
和size
关键字,from
表示起始值,size
表示一次查询的数量。
- 查询数据的总数
POST http://localhost:9200/user/student/_search?pretty
返回文档总数。
- 分页(一页包含1条数据)模糊查询(
match
,搜索关键字不分词)name="kevin"
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"match":{
"name":"kevin"
}
},
"from":0,
"size":1
}
结合文档总数即可返回简单的分页查询。
分页查询中往往我们也需要对数据进行排序返回,MySQL中使用order by
关键字,ES中使用sort
关键字指定排序字段以及降序升序。
- 分页(一页包含1条数据)查询age >= 21且age <=26的学生,按年龄降序排列。
POST http://localhost:9200/user/student/_search?pretty
{
"query":{
"range":{
"age":{
"gte":21,
"lte":26
}
}
},
"from":0,
"size":1,
"sort":{
"age":{
"order":"desc"
}
}
}
ES默认升序排列,如果不指定排序字段的排序),则sort
字段可直接写为"sort":"age"
。
第六章-Java客户端(上)
ES提供了多种方式使用Java客户端:
- TransportClient,通过Socket方式连接ES集群,传输会对Java进行序列化
- RestClient,通过HTTP方式请求ES集群
目前常用的是TransportClient
方式连接ES服务。但ES官方表示,在未来TransportClient
会被永久移除,只保留RestClient
方式。
同样,Spring Boot官方也提供了操作ES的方式Spring Data ElasticSearch
。本章节将首先介绍基于Spring Boot所构建的工程通过Spring Data ElasticSearch
操作ES,再介绍同样是基于Spring Boot所构建的工程,但使用ES提供的TransportClient
操作ES。
Spring Data ElasticSearch
本节完整代码(配合源码使用更香):https://github.com/yu-linfeng/elasticsearch6.x_tutorial/tree/master/code/spring-data-elasticsearch
使用Spring Data ElasticSearch
后,你会发现一切变得如此简单。就连连接ES服务的类都不需要写,只需要配置一条ES服务在哪儿的信息就能开箱即用。
作为简单的API和简单搜索两章节的启下部分,本节示例仍然是基于上一章节的示例。
通过IDEA创建Spring Boot工程,并且在创建过程中选择Spring Data ElasticSearch
,主要步骤如下图所示:
第一步,创建工程,选择Spring Initializr
。
第二步,选择SpringBoot的依赖NoSQL -> Spring Data ElasticSearch
。
创建好Spring Data ElasticSearch的Spring Boot工程后,按照ES惯例是定义Index以及Type和Mapping。在Spring Data ElasticSearch
中定义Index、Type以及Mapping非常简单。ES文档数据实质上对应的是一个数据结构,也就是在Spring Data ElasticSearch
要我们把ES中的文档数据模型与Java对象映射关联。
定义StudentPO对象,对象中定义Index以及Type,Mapping映射我们引入外部json文件(json格式的Mapping就是在简单搜索一章中定义的Mapping数据)。
package com.coderbuff.es.easy.domain;
import lombok.Getter;
import lombok.Setter;
import lombok.ToString;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
import org.springframework.data.elasticsearch.annotations.Mapping;
import java.io.Serializable;
/**
* ES mapping映射对应的PO
* Created by OKevin on 2019-06-26 22:52
*/
@Getter
@Setter
@ToString
@Document(indexName = "user", type = "student")
@Mapping(mappingPath = "student_mapping.json")
public class StudentPO implements Serializable {
private String id;
/**
* 姓名
*/
private String name;
/**
* 年龄
*/
private Integer age;
}
Spring Data ElasticSearch
为我们屏蔽了操作ES太多的细节,以至于真的就是开箱即用,它操作ES主要是通过ElasticsearchRepository
接口,我们在定义自己具体业务时,只需要继承它,扩展自己的方法。
package com.coderbuff.es.easy.dao;
import com.coderbuff.es.easy.domain.StudentPO;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import org.springframework.stereotype.Repository;
/**
* Created by OKevin on 2019-06-26 23:45
*/
@Repository
public interface StudentRepository extends ElasticsearchRepository<StudentPO, String> {
}
ElasticsearchTemplate
可以说是Spring Data ElasticSearch
最为重要的一个类,它对ES的Java API进行了封装,创建索引等都离不开它。在Spring中要使用它,必然是要先注入,也就是实例化一个bean。而Spring Data ElasticSearch
早为我们做好了一切,只需要在application.properties
中定义spring.data.elasticsearch.cluster-nodes=127.0.0.1:9300
,就可大功告成(网上有人的教程还在使用applicationContext.xml定义一个bean,事实证明,受到了Spring多年的“毒害”,Spring Boot远比我们想象的智能)。
单元测试创建Index、Type以及定义Mapping。
package com.coderbuff.es;
import com.coderbuff.es.easy.domain.StudentPO;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.junit4.SpringRunner;
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataElasticsearchApplicationTests {
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**
* 测试创建Index,type和Mapping定义
*/
@Test
public void createIndex() {
elasticsearchTemplate.createIndex(StudentPO.class);
elasticsearchTemplate.putMapping(StudentPO.class);
}
}
使用GET http://localhost:9200/user
请求命令,可看到通过Spring Data ElasticSearch
创建的索引。
索引创建完成后,接下来就是定义操作student文档数据的接口。在StudentService
接口的实现中,通过组合StudentRepository
类对ES进行操作。StudentRepository
类继承了ElasticsearchRepository
接口,这个接口的实现已经为我们提供了基本的数据操作,保存、修改、删除只是一句代码的事。就算查询、分页也为我们提供好了builder类。"最难"的实际上不是实现这些方法,而是如何构造查询参数SearchQuery
。创建SearchQuery
实例,有两种方式:
- 构建
NativeSearchQueryBuilder
类,通过链式调用构造查询参数。 - 构建
NativeSearchQuery
类,通过构造方法传入查询参数。
这里以"不分页range范围和term查询age>=21且age<26且name=kevin"为例。
SearchQuery searchQuery = new NativeSearchQueryBuilder()
.withQuery(QueryBuilders.boolQuery()
.must(QueryBuilders.rangeQuery("age").gte(21).lt(26))
.must(QueryBuilders.termQuery("name", "kevin"))).build();
搜索条件的构造一定要对ES的查询结构有比较清晰的认识,如果是在了解了简单的API和简单搜索两章的前提下,学习如何构造多加练习一定能掌握。这里就不一一验证前面章节的示例,一定要配合代码使用练习(https://github.com/yu-linfeng/elasticsearch6.x_tutorial/tree/master/code/spring-data-elasticsearch)
TransportClient
ES的Java API非常广泛,一种操作可能会有好几种写法。Spring Data ElasticSearch实际上是对ES Java API的再次封装,从使用上将更加简单。
本节请直接对照代码学习使用,如果要讲解ES的Java API那将是一个十分庞大的工作,https://github.com/yu-linfeng/elasticsearch6.x_tutorial/tree/master/code/transportclient-elasticsearch
关注公众号:CoderBuff,回复“es”获取《ElasticSearch6.x实战教程》完整版PDF。
《ElasticSearch6.x实战教程》之简单搜索、Java客户端(上)的更多相关文章
- 《ElasticSearch6.x实战教程》之复杂搜索、Java客户端(下)
第八章-复杂搜索 黑夜给了我黑色的眼睛,我却用它寻找光明. 经过了解简单的API和简单搜索,已经基本上能应付大部分的使用场景.可是非关系型数据库数据的文档数据往往又多又杂,各种各样冗余的字段,组成了一 ...
- 《ElasticSearch6.x实战教程》之简单的API
第三章-简单的API 万丈高楼平地起 ES提供了多种操作数据的方式,其中较为常见的方式就是RESTful风格的API. 简单的体验 利用Postman发起HTTP请求(当然也可以在命令行中使用curl ...
- 《ElasticSearch6.x实战教程》正式推出(附图书抽奖)
经过接近1个月的时间,ElasticSearch6.x实战教程终于成册.这本实战教程小册有很多不足(甚至可能有错误),也是第一次完整推出一个系列的教程. 1年前,我开始真正接触ES,在此之前仅停留在知 ...
- 《ElasticSearch6.x实战教程》之分词
第四章-分词 下雨天留客天留我不留 本打算先介绍"简单搜索",对ES的搜索有一个直观的感受.但在写的过程中发现分词无论如何都绕不过去.term查询,match查询都与分词息息相关, ...
- 《ElasticSearch6.x实战教程》之准备工作、基本术语
第一章-准备工作 工欲善其事必先利其器 ElasticSearch安装 ElasticSearch6.3.2下载地址(Linux.mac OS.Windows通用,下载zip包即可):https:// ...
- 《ElasticSearch6.x实战教程》之父-子关系文档
第七章-父-子关系文档 打虎亲兄弟,上阵父子兵. 本章作为复杂搜索的铺垫,介绍父子文档是为了更好的介绍复杂场景下的ES操作. 在非关系型数据库数据库中,我们常常会有表与表的关联查询.例如学生表和成绩表 ...
- 《ElasticSearch6.x实战教程》之实战ELK日志分析系统、多数据源同步
第十章-实战:ELK日志分析系统 ElasticSearch.Logstash.Kibana简称ELK系统,主要用于日志的收集与分析. 一个完整的大型分布式系统,会有很多与业务不相关的系统,其中日志系 ...
- 小兔Java教程 - 三分钟学会Java文件上传
今天群里正好有人问起了Java文件上传的事情,本来这是Java里面的知识点,而我目前最主要的精力还是放在了JS的部分.不过反正也不麻烦,我就专门开一贴来聊聊Java文件上传的基本实现方法吧. 话不多说 ...
- Android简易实战教程--第四十三话《上拉加载与下拉刷新》
ListView的下拉刷新很常见,很多开源的框架都能做到这个效果,当然也可以自己去实现.本篇案例是基于xlistview的. 布局: <RelativeLayout xmlns:android= ...
随机推荐
- 【Windows10 IoT开发系列】开发人员模式设置
原文:[Windows10 IoT开发系列]开发人员模式设置 声明:本文转自微软Windows 开发人员中心(https://msdn.microsoft.com/library/windows/ ...
- 修改Android Studio默认的API Level(SDK版本)
原文:修改Android Studio默认的API Level(SDK版本) Android Studio(2.1.2)新建工程的时候只会让你选择最低支持的SDK版本,默认的目标编译SDK版本会以系统 ...
- Qt文档系统分析(解释Qt文档的生成工具与过程)
写在前面 只要打开Qt Assistant或Qt Creator的Help,或是打开在线版的 http://doc.qt.nokia.com ,Qt的漂亮的文档就会呈现在我们眼前.而且 Qt的文档,长 ...
- Android零基础入门第78节:四大组件的纽带——Intent
前面学习Activity时己经多次使用了 Intent,当一个Activity需要启动另一个Activity时, 程序并没有直接告诉系统要启动哪个Activity,而是通过Intent来表达自己的意图 ...
- delphi中最小化其他程序及所有程序最小化(使用 shell.minimizeAll 和自己寻找窗口这两种办法)
1.所有程序最小化 uses ComObj; var shell : OleVariant; begin shell := CreateOleObject('Shell.Appli ...
- Capsule Network
Capsule Network最大的特色在于vector in vector out & 动态路由算法. vector in vector out 所谓vector in vector out ...
- QString之simplified()用于读取数据、规范数据,非常方便
在工程项目开发中,遇到这么个问题:手工计入文件中的数据,每行有三个,前两个是数字,最后一个是标识,现在把这3个数据提取出来. 一提取就出现问题了:由于手工导入,数据间使用空白间隔,有可能是一个空格,有 ...
- Delphi xe5 StyleBook的用法(待续)
首先要在FORM里拖进来一个StyleBook1,然后在Form里设置属性,记住一定要在单击form,在OBject Inspector里设置StyleBook [StyleBook1]. 下一个属 ...
- C++虚函数表解析(图文并茂,非常清楚)( 任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法)good
C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数.这种技术可以让父类的指针有“多种形态”,这是一种泛型技术 ...
- qlineedit设置背景颜色(使用QPalette的方法不行,必须使用QSS)
使用QPalette的方法不行, ui->le_text->setAutoFillBackground(true);qDebug() << ui->le_text-> ...