2020/02/11 upd

更换markdown编辑器,修了一下写错了的式子


 

传送门

题目描述

热情好客的小猴子请森林中的朋友们吃饭,他的朋友被编号为 1?N,每个到来的朋友都会带给他一些礼物:大香蕉。其中,第一个朋友会带给他 1 个大香蕉,之后,每一个朋友到来以后,都会带给他之前所有人带来的礼物个数再加他的编号的K次方那么多个。所以,假设K=2,前几位朋友带来的礼物个数分别是:

1,5,15,37,83,…

假设K=3,前几位朋友带来的礼物个数分别是:

1,9,37,111,…

现在,小猴子好奇自己到底能收到第 N 个朋友多少礼物,因此拜托于你了。

已知 N,K,请输出第 N 个朋友送的礼物个数 mod 10^9+7。

输入格式

第一行,两个整数 N,K。

输出格式

一个整数,表示第 N 个朋友送的礼物个数 mod 10^9+7 。

输入输出样例

输入 #1

4 2

输出 #1

37

输入 #2

2333333 2

输出 #2

514898185

输入 #3

1234567890000 3

输出 #3

891659731

输入 #4

66666666 10

输出 #4

32306309

100% 的数据:\(N \le 10^{18}, K \le 10\)

暴搞通项公式

蒟蒻想了一上午弄出来个\(O(k^2)\)的算法

这道题比较裸,就是甩给你个递推式让你求第\(n\)项

\[A_1 = 1,A_n = \sum_{i=1}^{n-1} A_i + n^k
\]

那首先我们来手动打个表qwq

\(A_i\) \ \(i^k\) \(1^k\) \(2^k\) \(3^k\) \(4^k\) \(5^k\) \(6^k\)
\(A_1\) 1
\(A_2\) 1 1
\(A_3\) 2 1 1
\(A_4\) 4 2 1 1
\(A_5\) 8 4 2 1 1
\(A_6\) 16 8 4 2 1 1

表中第\(i\)行的系数乘上对应列标后的和就是\(A_i\)

于是我们发现了这一显然的规律

\[A_1 = 1,A_n = 2 A_{n-1} + n^k - (n-1)^k
\]

我们就非常优秀的把这个递推式化简了:p

2020/05/16 update

当时太菜了没学数列,实际上这个规律根本就不需要找,可以直接推出。

设 \(S_n = \sum_{i=1}^n a_n\) ,根据题意 \(a_n = S_{n-1} + n^k\) 。

用上式减去 \(a_{n-1} = S_{n-2} + (n+1)^k\) 得

\[\begin{aligned}
a_n - a_{n-1} &= a_{n-1} + n^k - (n+1)^k \\
a_n &= 2 a_{n-1} + n^k - (n+1)^k

\end{aligned}
\]

得到上式。

总感觉它有个通项公式什么的吧,我们来胡乱瞎推一波

观察递推式,右式那坨\(n^k - (n-1)^k\)看着就恶心,我们想找个办法把它消掉,使它的形式变成一个等比数列,这样通项公式就容易得到了

显然\(n^k - (n-1)^k\)是一个\(k-1\)次多项式,所以我们构造数列\(U\)和\(k-1\)次多项式\(B\)

\[\begin{aligned}
U_n = A_n + B(n) \\
B(n) = \sum_{i=0}^{k-1} b_i n^i
\end{aligned}
\]

对数列\(U\)的定义式移项得

\[A_n = U_n - B(n)
\]

带回\(A\)的递推式,得

\[\begin{aligned}
U_n - B(n) = 2(U_{n-1} - B(n-1)) + n^k - (n-1)^k \\
U_n = 2U_{n-1} + B(n) - 2B(n-1) + n^k - (n-1)^k
\end{aligned}
\]

我们想让\(U_n=2U_{n-1}\),只需使

\[B(n) - 2B(n-1) + n^k - (n-1)^k = 0
\]

\[- B(n) + 2B(n-1) = n^k - (n-1)^k
\]

现在我们要求解多项式\(B\),试着将多项式的每一项,也就是\(b_i\),都表示出来

先看右式,用二项式定理展开\((n-1)^k\),右式变为

\[\quad n^k - \sum_{i=0}^{k} C_k^i (-1)^{k-i} n^i
\]

提出和式中的\(k\)次项与\(n^k\)消掉

\[= - \sum_{i=0}^{k-1} C_k^i (-1)^{k-i} n^i
\]

再来看左式,将多项式展开得

\[- \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} b_i (n-1)^i
\]

也用二项式定理展开\((n-1)^i\)

\[= - \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} b_i \sum_{j=0}^i C_i^j (-1)^{i-j} n^j
\]

转换枚举

\[\begin{aligned}
&= - \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} \sum_{j=0}^i b_iC_i^j (-1)^{i-j} n^j \\
&= - \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{j=0}^{k-1} \sum_{i=j}^{k-1} b_iC_i^j (-1)^{i-j} n^j \\
&= - \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} \{ \sum_{j=i}^{k-1} b_j C_j^i (-1)^{j-i} \} n^i
\end{aligned}
\]

(这里大括号只是为了标明系数,没有实际意义)

现在把左右式合在一起写

\[- \sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} \{ \sum_{j=i}^{k-1} b_j C_j^i (-1)^{j-i} \} n^i = - \sum_{i=0}^{k-1} C_k^i (-1)^{k-i} n^i
\]

消掉负号

\[\sum_{i=0}^{k-1} b_i n^i + 2 \sum_{i=0}^{k-1} \{ \sum_{j=i}^{k-1} b_j C_j^i (-1)^{j-i} \} n^i = \sum_{i=0}^{k-1} C_k^i (-1)^{k-i} n^i
\]

所以

\[b_i + 2 \sum_{j=i}^{k-1} b_j C_j^i (-1)^{j-i} = C_k^i (-1)^{k-i}
\]

于是我们非常愉快艰难的得到了\(b_i\)的表示,高斯消元即可得到\(b_i\)。

仔细观察发现这是个上三角矩阵,所以我们可以直接\(O(k^2)\)求解!

于是我们解出了多项式\(B\)。

回过头来看数列\(U\)的定义,\(U_n = A_n + B(n)\)

现在解出了\(B\),我们又知道\(A_1 = 1\),就能知道

\[U_1 = A_1 + B(1) = B(1) +1
\]

于是我们得到了数列\(U\)的完整递推式

\[U_1=B(1) + 1,U_n=2U_{n-1}
\]

现在就容易知道\(U\)的通项公式了,它是

\[U_n = ( B(1) + 1 )2^{n-1}
\]

又因为\(A_n = U_n - B(n)\),\(A\)的通项公式就出来了!

\[A_n = ( B(1) + 1 )2^{n-1} - B(n)
\]

完了

//洛谷P5364 [SNOI2017]礼物
//Author:sun123zxy
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<ctime>
#include<cstdlib>
#include<queue>
using namespace std;
typedef long long ll;
const ll MOD=1E9+7; ll QPow(ll x,ll up){//快速幂
x%=MOD;
ll ans=1;
while(up){
if(up%2==0){
x=x*x%MOD;
up/=2;
}else{
ans=ans*x%MOD;
up--;
}
}
return ans;
}
ll Inv(ll x){//逆元
return QPow(x,MOD-2);
} const ll MXK=2005;
ll fac[MXK],facInv[MXK];
void FacInit(ll n){
fac[0]=1;for(ll i=1;i<=n;i++) fac[i]=fac[i-1]*i%MOD;//求阶乘
facInv[n]=Inv(fac[n]);
for(ll i=n-1;i>=1;i--) facInv[i]=facInv[i+1]*(i+1)%MOD;//线性求阶乘逆元
facInv[0]=1;
}
ll C(ll n,ll k){//组合数
if(n<k) return 0;
return fac[n]*facInv[n-k]%MOD*facInv[k]%MOD;
} ll N,K;
ll c,B[MXK];//2^(n-1)的系数c和多项式B
ll GetY(ll x){//获取B(x)
x%=MOD;
ll y=0;
ll xPow=1;
for(int i=0;i<=K-1;i++){
y=(y+B[i]*xPow)%MOD;
xPow=xPow*x%MOD;
}
return y;
}
ll mtx[MXK][MXK];
void GetFormula(){
for(ll i=0;i<=K-1;i++) for(ll j=0;j<=K;j++) mtx[i][j]=0;
for(ll i=0;i<=K-1;i++){//初始化方程组
mtx[i][i]=1;
for(ll j=i;j<=K-1;j++){
ll p=-1;if((j-i)%2==0) p=1;
mtx[i][j]+=(-2*C(j,i)%MOD*p+MOD)%MOD;
}
ll p=-1;if((K-i)%2==0) p=1;
mtx[i][K]=(C(K,i)*p+MOD)%MOD;
}
for(ll i=K-1;i>=0;i--){//上三角高斯消元
B[i]=mtx[i][K]*Inv(mtx[i][i])%MOD;
for(ll j=i-1;j>=0;j--){
mtx[j][K]=(mtx[j][K]-B[i]*mtx[j][i]%MOD+MOD)%MOD;
mtx[j][i]=0;
}
}
c=(GetY(1)+1)+MOD%MOD;
}
int main(){
cin>>N>>K;
FacInit(K);
GetFormula();
cout<<(c*QPow(2,N-1)%MOD-GetY(N)+MOD)%MOD;
return 0;
}

和洛谷题解里rqy聚聚的解法似乎有一些关联(

2019/07/01

洛谷P5364 [SNOI2017]礼物 题解的更多相关文章

  1. 洛谷 P1194 买礼物 题解

    P1194 买礼物 题目描述 又到了一年一度的明明生日了,明明想要买\(B\)样东西,巧的是,这\(B\)样东西价格都是\(A\)元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第II样东西 ...

  2. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  3. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  4. 洛谷 P1194 买礼物

    洛谷 P1194 买礼物 题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近有促销活动,也就是: 如果你买了第II样东西,再买第J样,那么 ...

  5. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  6. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  7. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  8. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  9. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

随机推荐

  1. tcp协议传输方法&粘包问题

    socket实现客户端和服务端 tcp协议可以用socket模块实现服务端可客户端的交互 # 服务端 import socket #生成一个socket对象 soc = socket.socket(s ...

  2. Spring Boot中使用Jpa的findOne方法不能传入id

    最近通过慕课网学习spring boot,视频中通过jpa的findOne方法以id为参数查询出对应的信息, 而当我自己做测试的时候却发现我的findOne方法的参数没有Integer类型的id,而是 ...

  3. centos7.6安装python3.7

    1.安装python3.7后,需要: yum install libffi-devel -y 然后再到python源码目录再make install 重新编译一下. 否则pip安装一些包时会安装不上, ...

  4. json序列化反序列化Jackson相关注解

    1.@Transient @Transient表示该属性并非一个到数据库表的字段的映射,ORM框架将忽略该属性:如果一个属性并非数据库表的字段映射,就务必将其标示为@Transient,否则ORM框架 ...

  5. .NET Core简单使用RabbitMq

    RabbitMQ简介 RabbitMQ是一个开源的,基于AMQP(Advanced Message Queuing Protocol)协议的完整的可复用的企业级消息队,RabbitMQ可以实现点对点, ...

  6. es6 proxy浅析

    Proxy 使用proxy,你可以把老虎伪装成猫的外表,这有几个例子,希望能让你感受到proxy的威力. proxy 用来定义自定义的基本操作行为,比如查找.赋值.枚举性.函数调用等. proxy接受 ...

  7. JVM前奏篇(大局观)

    话不多说直接上干货,先来看oracle官网中是怎么描述JDK的:https://docs.oracle.com/javase/8/docs/index.html 这是官网中JDK.JRE.JVM的一个 ...

  8. hadoop format 重新格式化

    前文:如果格式化完之后,使用jps命令发现进程都已经启动,但是使用web页面打不开hadoop的网页,可能原因就是防火墙没关或者是哪个配置过程配错了. 1.关闭防火墙 一般最好是关闭防火墙比较关闭. ...

  9. 第6节:Java基础 - 三大集合(上)

    第6节:Java基础 - 三大集合(上) 本小节是Java基础篇章的第四小节,主要介绍Java中的常用集合知识点,涉及到的内容包括Java中的三大集合的引出,以及HashMap,Hashtable和C ...

  10. USB视频采集系统 视频测试软件将正式发布(方便调试测试各自摄像头,RAW,RGB,YUV)

    先上图,看看这个软件,学习fpga将近一年,了解视频图像开发方向也半年有余,不断学习不断总结,开发软件工具是为了更方便的学习新通信 主要相关知识: FPGA+SDRAM+VGA(双端口fifo技术) ...