acwing 25. 剪绳子
习题地址 https://www.acwing.com/problem/content/description/24/
题目描述
给你一根长度为 nn 绳子,请把绳子剪成 mm 段(mm、nn 都是整数,2≤n≤582≤n≤58 并且 m≥2m≥2)。
每段的绳子的长度记为k[0]、k[1]、……、k[m]。k[0]k[1] … k[m] 可能的最大乘积是多少?
例如当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到最大的乘积18。
样例
输入: 输出:
一道数论题目 就是整数可以拆分成几个整数 得到乘积最大
但是也可以使用动态规划做
dp[i]表示 长度为i的绳子可以拆分得到的最大结果
由于绳子必须拆分 i至少等于2
而长度i的各种拆分方案中 假设从长度为j的位置剪下第一刀 (j < i)
那么乘积就是 j*(i-j)
i-j这个长度是否还需要拆分 那么取决于dp[i-j]大 还是i-j大
最后得到 从长度为j的位置剪下第一刀 所能得到的最大乘积结果
j的取值范围是 1到i-1的. 最后 代码如下:
class Solution {
public:
int maxProductAfterCutting(int length) {
vector<int> dp(length+,); for(int i = ;i <= length;i++){
for(int j= ;j <i;j++){
dp[i] = max(dp[i] ,max(j*(i-j) ,dp[i-j]*j ));
}
} return dp[length];
}
};
acwing 25. 剪绳子的更多相关文章
- 【Java】 剑指offer(13) 剪绳子
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...
- 《剑指offer》第十四题(剪绳子)
// 面试题:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1]* ...
- 剑指offer——面试题14:剪绳子
// 面试题14:剪绳子 // 题目:给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n>1并且m≥1). // 每段的绳子的长度记为k[0].k[1].…….k[m].k[0]*k[1 ...
- 【Python】剑指offer 14:剪绳子
题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...
- NOJ——1672剪绳子(博弈)
[1672] 剪绳子 时间限制: 500 ms 内存限制: 65535 K 问题描述 已知长度为n的线圈,两人依次截取1~m的长度,n, m为整数,不能取者为输. 输入 输入n, m:( 0 < ...
- 【剑指offer】面试题 14. 剪绳子
面试题 14. 剪绳子 LeetCode 题目描述 给你一根长度为 n 的绳子,请把绳子剪成 m 段(m.n 都是整数,n>1 并且 m>1),每段绳子的长度记为 k[0],k[1],·· ...
- 剑指offer——15剪绳子
题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...
- [剑指offer]14-1.剪绳子
14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...
- 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂
剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...
随机推荐
- C#通过反射调用类及方法
反射有个典型的应用,就是菜单的动态加载,原理就是通过反射调用某个窗体(类).下面演示一下通过反射调用类及方法: 1.新建一个类,命名为:ReflectionHelper,代码如下: #region 创 ...
- Java生鲜电商平台-高可用微服务系统如何设计?
Java生鲜电商平台-高可用微服务系统如何设计? 说明:Java生鲜电商平台高可用架构往往有以下的要求: 高可用.这类的系统往往需要保持一定的 SLA,7*24 时不间断运行不代表完全不挂,而是有一定 ...
- 如何修改PhpStorm快捷键
- ES6-promise对象的使用
Promise 的含义(摘自阮一峰ES6ru) Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大.它由社区最早提出和实现,ES6 将其写进了语言标准,统一 ...
- SQL Server之批量清理数据库的死锁
DECLARE killspid CURSOR FOR (SELECT CONVERT(VARCHAR(100), request_session_id) FROM sys.dm_tran_l ...
- Java8特性Lambda表达式
Lambda 表达式 简介: Lambda 表达式,也可称为闭包,它是推动 Java 8 发布的最重要新特性. Lambda 允许把函数作为一个方法的参数(函数作为参数传递进方法中). (parame ...
- JS-for循环练习题
1.大马驮2石粮食,中马驮1石粮食,两头小马驮一石粮食,要用100匹马,驮100石粮食,该如何调配? //驮100石粮食,大马需要50匹 for(var a=0;a<=50;a++){ //驮1 ...
- salt-api 获取服务器信息,minion批量执行cmd命令
import requests import json try: import cookielib except: import http.cookiejar as cookielib # 使用url ...
- 带有Spring Boot和MySQL的Docker:简介(Part 1)
通过优锐课java学习分享中,我们看一下带有Spring Boot和MySQL的Docker教程.非常实用,分享给大家参考学习. Docker是一种技术,开发人员或DevOps团队可以使用容器来构建, ...
- Cypress 之 常用API
.visit() 访问一个远程URL.>>详情参考 Cypress 之 cy.visit() cy.visit(url) cy.visit(url, options) cy.visit(o ...