点此看题面

大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值。假设根节点\(1\)号节点的点权有\(m\)种可能性,其中权值第\(i\)小的可能点权是\(V_i\),可能性为\(D_i\),求\(\sum_{i=1}^mi\cdot V_i\cdot D_i^2\)。

前言

好妙的题目,像我这种蒟蒻根本想不到线段树合并还可以这么玩。

同时,在无数个地方漏掉\(PushDown\)的我感觉自己真是弱到连线段树都不会了......

题意转化

由于题目中保证\(0<p_x<1\),所以每种点权都可能被取到。

如果我们将点权排个序,那么\(i\)和\(V_i\)都是显然的,只要想个办法求出\(D_i\)即可。

推式子

首先,我们把权值离散化。

设\(f_{x,i}\)表示节点\(x\)的权值为\(i\)的概率,则\(D_i=f_{1,i}\)。

考虑如何转移。

如果\(x\)没有子节点,设其给定权值为\(v\),那么\(f_{x,i}=[i=v]\)。

如果\(x\)只有一个子节点,设其为\(son\),那么\(f_{x,i}=f_{son,i}\)。

如果\(x\)有两个子节点,分别为\(lc\)和\(rc\)。

题目告诉我们,权值是互不相同的。

则对于一个权值\(i\),若其满足\(f_{lc,i}>0\),就说明这个权值在左子树中。

下面便以在左子树中的权值\(i\)为例,讲讲\(f_{x,i}\)如何转移,而在右子树中是同理的。

我们知道,有\(p_x\)的概率,\(x\)的权值取较大值,则此时\(i\)应大于右儿子的权值,即概率为\(p_x(\sum_{k=1}^{i-1}f_{rc,k})\)。

同理,有\((1-p_x)\)的概率,\(x\)的权值取较小值,则此时\(i\)应小于右儿子的权值,即概率为\((1-p_x)(\sum_{k=i+1}^mf_{rc,k})\)。

而这个概率实际上还要乘上\(f_{lc,i}\),所以:

\[f_{x,i}=f_{lc,i}\cdot(p_x(\sum_{k=1}^{i-1}f_{rc,k})+(1-p_x)(\sum_{k={i+1}}^mf_{rc,k}))
\]

线段树分治

仔细观察上面的式子,就可以发现,\(\sum_{k=1}^{i-1}f_{rc,k}\)和\(\sum_{k={i+1}}^mf_{rc,k}\)分别是前缀和与后缀和。

现在我们需要一个数据结构,能够维护数组之间的转移,还在前缀和与后缀和的维护方面有优势,于是不难想到动态开点线段树。

而这个转移的过程,可以用线段树合并来实现。

用线段树合并有什么好处呢?

就是在线段树合并的过程中,我们可以同时维护下\(f_{lc}\)和\(f_{rc}\)的前缀和与后缀和,这样就能很方便地进行转移了。

当遇到某一个节点,在一棵树中为空,一棵树中非空,我们就可以借助维护下的前缀和与后缀和,打一个乘法标记,便可完成转移了。

具体实现详见代码。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 300000
#define LN 20
#define X 998244353
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
using namespace std;
int n,ee,dc,a[N+5],dv[N+5],Rt[N+5],lnk[N+5];struct edge {int to,nxt;}e[N+5];
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
}F;
template<int PS> class SegmentTree//动态开点线段树
{
private:
#define PD(x) F[x]^1&&\
(\
V[S[x][0]]=1LL*V[S[x][0]]*F[x]%X,F[S[x][0]]=1LL*F[S[x][0]]*F[x]%X,\
V[S[x][1]]=1LL*V[S[x][1]]*F[x]%X,F[S[x][1]]=1LL*F[S[x][1]]*F[x]%X,F[x]=1\
)
int Nt,V[PS+5],F[PS+5],S[PS+5][2];
public:
I void Ins(int& rt,CI x,CI l=1,CI r=dc)//插入
{
if(rt=++Nt,V[rt]=F[rt]=1,l==r) return;int mid=l+r>>1;
x<=mid?Ins(S[rt][0],x,l,mid):Ins(S[rt][1],x,mid+1,r);
}
I int Qry(CI rt,CI x,CI l=1,CI r=dc)//询问
{
if(l==r) return V[rt];int mid=l+r>>1;PD(rt);
return x<=mid?Qry(S[rt][0],x,l,mid):Qry(S[rt][1],x,mid+1,r);
}
I int Merge(CI x,CI y,CI p,CI l=1,CI r=dc,CI lx=0,CI rx=0,CI ly=0,CI ry=0)//线段树合并
{
if(!x&&!y) return 0;RI rt=++Nt;//皆为空直接返回
if(!y) return PD(x),F[rt]=(1LL*p*ly+1LL*(1-p+X)*ry)%X,//修改,注意修改前下传标记
V[rt]=1LL*F[rt]*V[x]%X,S[rt][0]=S[x][0],S[rt][1]=S[x][1],rt;//拷贝信息
if(!x) return PD(y),F[rt]=(1LL*p*lx+1LL*(1-p+X)*rx)%X,//修改,注意修改前下传标记
V[rt]=1LL*F[rt]*V[y]%X,S[rt][0]=S[y][0],S[rt][1]=S[y][1],rt;//拷贝信息
int mid=l+r>>1;PD(x),PD(y),F[rt]=1,//先下传标记
S[rt][0]=Merge(S[x][0],S[y][0],p,l,mid,lx,(rx+V[S[x][1]])%X,ly,(ry+V[S[y][1]])%X),//递归处理左子树
S[rt][1]=Merge(S[x][1],S[y][1],p,mid+1,r,(lx+V[S[x][0]])%X,rx,(ly+V[S[y][0]])%X,ry);//递归处理右子树
return V[rt]=(V[S[rt][0]]+V[S[rt][1]])%X,rt;//注意上传信息
}
};SegmentTree<N*LN<<1> S;
I void dfs(CI x)
{
if(!lnk[x]) return S.Ins(Rt[x],lower_bound(dv+1,dv+dc+1,a[x])-dv);//处理叶节点,注意离散化
for(RI i=lnk[x];i;i=e[i].nxt) dfs(e[i].to),//先处理子节点
Rt[x]=Rt[x]?S.Merge(Rt[x],Rt[e[i].to],a[x]):Rt[e[i].to];//合并子节点
}
int main()
{
RI i,x,ans;for(F.read(n),i=1;i<=n;++i) F.read(x),x&&add(x,i);
for(i=1;i<=n;++i) F.read(a[i]),lnk[i]?(a[i]=1LL*a[i]*Qpow(10000,X-2)%X):(dv[++dc]=a[i]);
sort(dv+1,dv+dc+1),dfs(1);//排序
for(ans=0,i=1;i<=dc;++i) x=S.Qry(Rt[1],i),ans=(1LL*i*dv[i]%X*x%X*x+ans)%X;//统计答案
return printf("%d",ans),0;
}

【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)的更多相关文章

  1. [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)

    还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...

  2. 洛谷P3066 [USACO12DEC]逃跑的Barn (线段树合并)

    题目描述It's milking time at Farmer John's farm, but the cows have all run away! Farmer John needs to ro ...

  3. 洛谷P1600 天天爱跑步(线段树合并)

    小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn ...

  4. 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)

    题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...

  5. 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)

    (另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...

  6. 洛谷P4556 雨天的尾巴(线段树合并)

    洛谷P4556 雨天的尾巴 题目链接 题解: 因为一个点可能存放多种物品,直接开二维数组进行统计时间.空间复杂度都不能承受.因为每一个点所拥有的物品只与其子树中的点有关,所以可以考虑对每一个点来建立一 ...

  7. LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并

    传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...

  8. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  9. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

随机推荐

  1. console 有没有小伙伴跟我一样想知道这个对象呢

    晚上看了会代码,没什么简单又好分享的 -0- 突然想到console这个对象,就把它打印了出来看看吧 ; for(var key in console){ i++; ){ document.write ...

  2. HTML+CSS基础知识点简要汇总(思维导图)

  3. 【漏洞预警】Redis 4.x/5.x 远程命令执行高危漏洞

    2019年7月09日,阿里云应急响应中心监测到有安全研究人员披露Redis 4.x/5.x 远程命令执行高危漏洞利用代码工具.针对未授权或弱口令的Redis服务,攻击者通过构造特定请求,成功利用漏洞可 ...

  4. 《Python3 网络爬虫开发实战》学习资料

    <Python3 网络爬虫开发实战> 学习资料 百度网盘:https://pan.baidu.com/s/1PisddjC9e60TXlCFMgVjrQ

  5. SpringCloudGateway开发详解

    路由简介: SpringCloudGateWay 是用于替代zuul作为API网关,在gateway中有三个重要的名词:过滤器,断言,路由 过滤器与断言是路由的一部分,路由便是将请求进行一系列的处理后 ...

  6. Oracle解析逗号分隔的字符串,或者01110110101此类数据

    -- 1.提取此类数据中的1的索引位置,从1开始    例: 0001100001100 --> 4,5,10,11 create or replace function hazq_instr_ ...

  7. 11.2 Data Guard Physical Standby Switchover Best Practices using SQL*Plus (Doc ID 1304939.1)

    11.2 Data Guard Physical Standby Switchover Best Practices using SQL*Plus (Doc ID 1304939.1) APPLIES ...

  8. 《HTTPS权威指南》读书笔记——SSL/TLS协议

    记录协议(record protocol) 负责在传输连接上交换所有底层信息 每一条记录以短标头开始,标头包含记录内容的类型.协议版本和长度 握手协议(handshake protocol) 整个过程 ...

  9. 【安富莱】V6,V5开发板用户手册,重在BSP驱动包设计方法,HAL库的框架学习,授人以渔(2019-11-04)

    说明: 1.本教程重在BSP驱动包设计方法和HAL库的框架学习,并将HAL库里面的各种弯弯绕捋顺,从而方便我们的程序设计. 2.本次工程延续以往的代码风格,从底层BSP驱动包到应用代码,变量命名,文件 ...

  10. MySQL 在 Windows 下安装教程、避坑指南

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,2008 年被 SUN 公司收购,后 SUN 公司又被 Oracle 公司收购. 一.下载 MySQL 官网 https:/ ...