CS184.1X 计算机图形学导论 罗德里格斯公式推导
罗德里格斯公式推导
图1(复制自wiki)
按照教程里,以图1为例子,设k为旋转轴,v为原始向量。 v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot。
首先我们对v进行分解,分解成一个平行于k和垂直于K的向量,分别为v∥和v⊥。
则v∥=<k,v>k (因为这里设了k是单位向量,所以|k|=1)
v⊥=v-v∥
为了方便研究旋转后的向量,我们以k和v的叉乘w以及v∥和v⊥建立坐标系。
w=kXv
设vrot的分量为v⊥',和v∥',显而易见的v∥'=v∥
而v⊥'可以由v⊥和w来表示。
由于v⊥'是vrot的分量,因此显而易见的|v⊥'|=|v⊥|
设k和v之间的夹角为α
w=kXv,即|w|=|k||v|sinα
从图中我们根据三角形公式,也可以得出|v⊥|=|v|sinα,而|k|=1,所以|v⊥|=|w|
因此,v⊥'=wsinθ+v⊥cosθ
vrot=wsinθ+v⊥cosθ+v∥
w=kXv
v∥=<k,v>k
v⊥=v-v∥
<k,v>k=kTvk(根据点乘转换成矩阵)= kkTv(可验证)
kXv=K*v (设K*为k的对偶矩阵)(根据叉乘转矩阵的方法)
vrot=K*vsinθ+(v- kkTv)cosθ+kkTv
=(K*sinθ+Icosθ+kkT(1-cosθ))v
最后得出旋转公式R=K*sinθ+Icosθ+kkT(1-cosθ)
CS184.1X 计算机图形学导论 罗德里格斯公式推导的更多相关文章
- CS184.1X 计算机图形学导论(第五讲)
一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...
- CS184.1X 计算机图形学导论(第三讲)
第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...
- CS184.1X 计算机图形学导论L3V2和L3V3(部分)
组合变换 连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性. X3=RX2 X2=SX1 X3=R(SX1)=(RS)X1 X3≠SRX ...
- CS184.1X 计算机图形学导论 第3讲L3V1
二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...
- CS184.1X 计算机图形学导论 作业0
1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...
- CS184.1X 计算机图形学导论 HomeWork1
最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...
- CS184.1X 计算机图形学导论(第四讲)
一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...
- 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”
这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...
- 计算机图形学 - 图形变换(opengl版)
作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...
随机推荐
- CentOS7 小技巧总结
1.CentOS7 解决无法使用tab自动补全 原因:CentOS在最小化安装时,没有安装自动补全的包,需要手动安装. yum -y install bash-completion 安装好后,重新登陆 ...
- PopupWindow弹出框
使用PopupWindow实现一个悬浮框,悬浮在Activity之上,显示位置可以指定 首先创建pop_window.xml: <?xml version="1.0" enc ...
- shell编写一键启动
#!/bin/bashAPP_NAME=bonade-uaac-service-0.0.1-SNAPSHOT.jarusage() { echo "Usage: sh 执行脚本.sh [st ...
- Day 25 网络基础2
ip地址划分 ip地址由32位二进制组成. 什么是二进制?0101 10进制 0-9 10 2进制 0-1 10 二进制1100 ==1X2^3+1X2^2+0X2^1+0X2^0 =12 十进制15 ...
- Tomcat部署spring boot项目
Tomcat部署spring boot项目 需要在启动类做修改
- pip安装Mysql-python报错EnvironmentError: mysql_config not found
如下图,安装Mysql-python报错EnvironmentError: mysql_config not found 经过验证,可通过以下方式解决: 从官网下载mysql安装,成功之后输入PATH ...
- 深入理解Three.js中线条Line,LinLoop,LineSegments
前言 在可视化开发中,无论是2d(canvas)开发还是3d开发,线条的绘制应用都是比较普遍的.比如绘制城市之间的迁徙图,运行轨迹图等.本文主要讲解的是Three.js中三种线条Line,LineLo ...
- jenkins上下游工程以及空间占用处理
1.最近项目架构调整,把十几个java项目整合为一个大的项目,这样构建上游工程成功后下游工程会自动构建 解决如下:取消这个勾选即可 2.构建单个项目时,会把所有子工程都打包一次 解决如下:指定构建时的 ...
- 记一次jmeter从txt文本获取数值并给测试计划的变量赋值,jmeter永久性修改变量。
前言: 需要永久性的改变变量. 其实这个办法并不是最好的,但是是最容易实现的.后期可做成从数据库里直接取值. 赋值BeanShell import java.io.File; import java. ...
- SPSS学习笔记参数检验—单样本t检验
单样本t检验 目的:利用来自总体的样本数据,推断该总体的均值是否与指定的检验值存在差异. 适用条件:样本来自的总体应服从或者近似服从正态分布. 注:当样本量n比较大时:由中心极限定理得知,即使原数据不 ...