CS184.1X 计算机图形学导论 罗德里格斯公式推导
罗德里格斯公式推导
图1(复制自wiki)
按照教程里,以图1为例子,设k为旋转轴,v为原始向量。 v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot。
首先我们对v进行分解,分解成一个平行于k和垂直于K的向量,分别为v∥和v⊥。
则v∥=<k,v>k (因为这里设了k是单位向量,所以|k|=1)
v⊥=v-v∥
为了方便研究旋转后的向量,我们以k和v的叉乘w以及v∥和v⊥建立坐标系。
w=kXv
设vrot的分量为v⊥',和v∥',显而易见的v∥'=v∥
而v⊥'可以由v⊥和w来表示。
由于v⊥'是vrot的分量,因此显而易见的|v⊥'|=|v⊥|
设k和v之间的夹角为α
w=kXv,即|w|=|k||v|sinα
从图中我们根据三角形公式,也可以得出|v⊥|=|v|sinα,而|k|=1,所以|v⊥|=|w|
因此,v⊥'=wsinθ+v⊥cosθ
vrot=wsinθ+v⊥cosθ+v∥
w=kXv
v∥=<k,v>k
v⊥=v-v∥
<k,v>k=kTvk(根据点乘转换成矩阵)= kkTv(可验证)
kXv=K*v (设K*为k的对偶矩阵)(根据叉乘转矩阵的方法)
vrot=K*vsinθ+(v- kkTv)cosθ+kkTv
=(K*sinθ+Icosθ+kkT(1-cosθ))v
最后得出旋转公式R=K*sinθ+Icosθ+kkT(1-cosθ)
CS184.1X 计算机图形学导论 罗德里格斯公式推导的更多相关文章
- CS184.1X 计算机图形学导论(第五讲)
一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...
- CS184.1X 计算机图形学导论(第三讲)
第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...
- CS184.1X 计算机图形学导论L3V2和L3V3(部分)
组合变换 连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性. X3=RX2 X2=SX1 X3=R(SX1)=(RS)X1 X3≠SRX ...
- CS184.1X 计算机图形学导论 第3讲L3V1
二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...
- CS184.1X 计算机图形学导论 作业0
1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...
- CS184.1X 计算机图形学导论 HomeWork1
最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...
- CS184.1X 计算机图形学导论(第四讲)
一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...
- 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”
这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...
- 计算机图形学 - 图形变换(opengl版)
作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...
随机推荐
- JDBC处理mysql大数据
大数据也称之为LOB(Large Objects),LOB又分为:clob和blob,clob用于存储大文本,blob用于存储二进制数据,例如图像.声音.二进制文等. 在实际开发中,有时是需要用程序把 ...
- Nginx 反向代理基本框架
全局配置指令:user nginx; 模块配置段 # 事件驱动模块,提供并发响应功能events{......}# http模块,提供web请求处理,可嵌套其他重要模块http{.......#ser ...
- Python:给定一个不超过5位的正整数,判断有几位
方法一:作比较 [root@python markPy]# cat five.py #!/usr/bin/python3 a=int(input(">>>>" ...
- 即时聊天APP(三) - 注册和登陆
注册和登陆大多都是一些用户名和密码的验证,所以放在一起写,注册代码: String account = accountEdit.getText().toString().trim(); String ...
- 如何使用rsync备份
已知3台服务器主机名分别为web01.backup .nfs主机信息见下表: 角色 外网IP(NAT) 内网IP(LAN) 主机名 WEB eth0:10.0.0.7 eth1:172.16.1.7 ...
- 【读书笔记】C++ primer 5th 从入门到自闭(一)
这几天看了C++ primer 5th的一二章,有很多收获,但是有的地方因为翻译的问题也搞得理解起来颇为难受啊啊啊啊.尤其是const限定符,在C语言并没有这么多复杂的语法,在C++里面语法细节就多的 ...
- 【PTA】浙江大学数据结构慕课 课后编程作业 03-树1 树的同构
题目内容 给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右 ...
- Docker学习之docker-compose
docker-compose 安装 1.Mac/Windows: 安装docker的时候附带安装了. 2.Linux: curl https://github.com/docker/compose L ...
- centos7防火墙命令
https://blog.csdn.net/achang21/article/details/52538049
- [转]Linux下 tar.xz格式文件的解压方法
现在很多找到的软件都是tar.xz的格式的,xz 是一个使用 LZMA压缩算法的无损数据压缩文件格式. 和gzip与bzip2一样,同样支持多文件压缩,但是约定不能将多于一个的目标文件压缩进同一个档案 ...