其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持。所以这都是你实际生产环境中必须考虑的问题。

基于数据库的实现方案

  数据库自增 id

  这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。

  这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是无论如何都是基于单个数据库。

  适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。

  设置数据库 sequence 或者表自增字段步长

  可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。

  比如说,现在有 8 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 8。

  适合的场景:在用户防止产生的 ID 重复时,这种方案实现起来比较简单,也能达到性能目标。但是服务节点固定,步长也固定,将来如果还要增加服务节点,就不好搞了。

UUID

  好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;更重要的是,UUID 不具有有序性,会导致 B+ 树索引在写的时候有过多的随机写操作(连续的 ID 可以产生部分顺序写),还有,由于在写的时候不能产生有顺序的 append 操作,而需要进行 insert 操作,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显。

  适合的场景:如果你是要随机生成个什么文件名、编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。

UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf

获取系统当前时间

  这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。

  适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。

snowflake 算法

  snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bit:表示的是时间戳,单位是毫秒。41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示69年的时间。
  • 10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10台机器上哪,也就是1024台机器。但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2^5个机房(32个机房),每个机房里可以代表 2^5 个机器(32台机器)。
  • 12 bit:这个是用来记录同一个毫秒内产生的不同 id,12 bit 可以代表的最大正整数是 2^12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {

    private long workerId;
private long datacenterId;
private long sequence; public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf(
"worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} private long twepoch = 1288834974657L; private long workerIdBits = 5L;
private long datacenterIdBits = 5L; // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L; private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits); private long lastTimestamp = -1L; public long getWorkerId() {
return workerId;
} public long getDatacenterId() {
return datacenterId;
} public long getTimestamp() {
return System.currentTimeMillis();
} public synchronized long nextId() {
// 这儿就是获取当前时间戳,单位是毫秒
long timestamp = timeGen(); if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 这个意思是说一个毫秒内最多只能有4096个数字
// 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
} // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
lastTimestamp = timestamp; // 这儿就是将时间戳左移,放到 41 bit那儿;
// 将机房 id左移放到 5 bit那儿;
// 将机器id左移放到5 bit那儿;将序号放最后12 bit;
// 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
} private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} // ---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1, 1, 1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
} }

  怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。

  所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。

  利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

  这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。

分库分表之后,id 主键如何处理?的更多相关文章

  1. 分库分布的几件小事(四)分库分表的id主键生成

    1.问题 其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持.所以这都是你实际生产环境中必须考虑的问 ...

  2. 分布式中的分库分表之后,ID 主键如何处理?

    面试题 分库分表之后,id 主键如何处理?(唯一性,排序等) 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定 ...

  3. 面试官:分库分表之后,id 主键如何处理?

    面试题 分库分表之后,id 主键如何处理? 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全 ...

  4. 分库分表之后,id 主键如何处理

    基于数据库的实现方案 数据库自增 id 这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id.拿到这个 id 之后再往对应的分 ...

  5. 面试系列38 分库分表之后,id主键如何处理?

    (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...

  6. 分库分表之后,id主键如何处理?

    (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...

  7. Hibernate学习笔记(三)Hibernate生成表单ID主键生成策略

    一. Xml方式 <id>标签必须配置在<class>标签内第一个位置.由一个字段构成主键,如果是复杂主键<composite-id>标签 被映射的类必须定义对应数 ...

  8. 分库分表数据库自增 id

    分库分表之后,ID 主键如何处理? 面试题 分库分表之后,id 主键如何处理? 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 ...

  9. 分库分表之后全局id咋生成?

    1.面试题 分库分表之后,id主键如何处理? 2.面试官心里分析 其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局 ...

随机推荐

  1. 【Java例题】2.5 温度转换

    5.输入华氏温度, 用下列公式将其转换为摄氏温度并输出. C=5/9(F-32). package study; import java.util.Scanner; public class demo ...

  2. 如何使用dmidecode命令查看硬件信息

    引言 当我们需要获取机器硬件信息时,可使用linux系统自带的dmidecode工具进行查询. dmidecode命令通过读取系统DMI表,显示服务器硬件和BIOS信息.除了可使用dmidecode查 ...

  3. 关于Linux安装的Python和miniconda

    ///注意 开头全部是小写建议自己手敲代码不要拷贝 1. Linux下软件的安装: a) Yum 安装(工具) rpm的增强版 b) Rpm安装 c) 源码编译安装:python3(LAMP) d) ...

  4. 微信小程序如何动态增删class类名达到切换tabel栏的效果

    微信小程序和vue还是有点差别的,要想实现通过动态切换class来达到切换css的效果,请看代码: //wxml页面: <view class="tab"> <v ...

  5. 爱奇艺JAVA后台面经

    链接:https://www.nowcoder.com/discuss/217425 1.volatile关键字的含义 2.Java NIO 讲一下 2.1 NIO selector,epoll的区别 ...

  6. UWP实现吸顶的Pivot

    话不多说,先上效果 这里使用了一个ScrollProgressProvider.cs,我们这篇文章先解析一下整体的动画思路,以后再详细解释这个Provider的实现方式. 结构 整个页面大致结构是 & ...

  7. React单页面应用使用antd的锚点跳转失效

    首先在react项目中引用antd的锚点 import {Anchor} from 'antd';const { Link } = Anchor; <Anchor> <Link hr ...

  8. Mysql优化(出自官方文档) - 第八篇(索引优化系列)

    目录 Mysql优化(出自官方文档) - 第八篇(索引优化系列) Optimization and Indexes 1 Foreign Key Optimization 2 Column Indexe ...

  9. Go_ go mod 命令解决墙的问题

    简介 由于众所周知的原因,在下载一些库的时候会下载不了,比如 golang.org/x/... 相关的库.为此,网上出现了很多解决方案. 从 Go1.11 开始,Go 引入了 module,对包进行管 ...

  10. Linux系统@根目录下各目录作用归纳图