作者 |  元乙  阿里云日志服务数据采集客户端负责人,目前采集客户端 logtail 在集团百万规模部署,每天采集上万应用数 PB 数据,经历多次双 11、双 12 考验。

导读:随着 K8s 不断更新迭代,使用 K8s 日志系统建设的开发者,逐渐遇到了各种复杂的问题和挑战。本篇文章中,作者结合自己多年经验,分析 K8s 日志系统建设难点,期待为读者提供有益参考。

在 Logging 这块做了几年,最近 1 年来越来越多的同学来咨询如何为 Kubernetes 构建一个日志系统,或者是来求助在这过程中遇到一系列问题如何解决,授人以鱼不如授人以渔,于是想把我们这些年积累的经验以文章的形式发出来,让看到这篇文章的同学能少走弯路。这个系列文章定位为长篇连载,内容偏向落地实操以及经验分享,且内容会随着技术的迭代而不定期更新。

前言

第一次听到 Kubernetes 的名字是在 2016 年,那个时候 Kubernetes 还处于和 Docker Swarm、Mesos 方案的“三国鼎立时代”,Kubernetes 由于一系列优势(可扩展、声明式接口、云友好)在这一竞争中崭露头角,最终获得统治地位。

Kubernetes 作为 CNCF 最核心的项目(没有之一),是 Cloud Native(云原生)落地的底座,目前阿里已经全面基于 Kubernetes 在开展全站的云原生改造,在 1-2 年内,阿里巴巴 100% 的业务都将跑在公有云上。

CloudNative 在 CNCF 的定义的核心是:在公有云、私有云、混合云等环境中,通过 Containers、Service Meshes、 MicroServices、Immutable Infrastructure、Declarative APIs 构建和运行可弹性扩展的且具有高容错性、易于管理、可观察、松耦合的应用系统。可观察性是应用系统必不可少的一个部分,云原生的设计理念中就有一条:面向诊断性设计(Diagnosability),包括集群级别的日志、Metric 和 Trace。

为何我们需要日志系统

通常一个线上问题的定位流程是:通过 Metric 发现问题,根据 Trace 定位到问题模块,根据模块具体的日志定位问题原因。在日志中包括了错误、关键变量、代码运行路径等信息,这些是问题排查的核心,因此日志永远是线上问题排查的必经路径。

在阿里的十多年中,日志系统伴随着计算形态的发展在不断演进,大致分为 3 个主要阶段:

  1. 在单机时代,几乎所有的应用都是单机部署,当服务压力增大时,只能切换更高规格的 IBM 小型机。日志作为应用系统的一部分,主要用作程序 Debug,通常结合 grep 等 Linux 常见的文本命令进行分析;
  2. 随着单机系统成为制约阿里业务发展的瓶颈,为了真正的 Scale out,飞天项目启动:2013 年飞天 5K 项目正式上线。在这个阶段各个业务开始了分布式改造,服务之间的调用也从本地变为分布式,为了更好的管理、调试、分析分布式应用,我们开发了 Trace(分布式链路追踪)系统、各式各样的监控系统,这些系统的统一特点是将所有的日志(包括 Metric 等)进行集中化的存储;
  3. 为了支持更快的开发、迭代效率,近年来我们开始了容器化改造,并开始了拥抱 Kubernetes 生态、业务全量上云、Serverless 等工作。在这阶段,日志无论从规模、种类都呈现爆炸式的增长,对日志进行数字化、智能化分析的需求也越来越高,因此统一的日志平台应运而生。

可观察性的终极解读

在 CNCF 中,可观察性的主要作用是问题的诊断,上升到公司整体层面,可观察性(Observability)不仅仅包括 DevOps 领域,还包括业务、运营、BI、审计、安全等领域,可观察性的最终的目标是实现公司各个方面的数字化、智能化。

在阿里,几乎所有的业务角色都会涉及到各式各样的日志数据,为了支撑各类应用场景,我们开发了非常多的工具和功能:日志实时分析、链路追踪、监控、数据加工、流计算、离线计算、BI 系统、审计系统等等。日志系统主要专注于数据的实时采集、清洗、智能分析与监控以及对接各类各样的流计算、离线系统。

Kubernetes 日志系统建设难点

单纯日志系统的解决方案非常多,相对也比较成熟,这里就不再去赘述,我们此次只针对 Kubernetes 上的日志系统建设而论。Kubernetes 上的日志方案相比我们之前基于物理机、虚拟机场景的日志方案有很大不同,例如:

  1. 日志的形式变得更加复杂,不仅有物理机/虚拟机上的日志,还有容器的标准输出、容器内的文件、容器事件、Kubernetes 事件等等信息需要采集;
  2. 环境的动态性变强,在 Kubernetes 中,机器的宕机、下线、上线、Pod销毁、扩容/缩容等都是常态,这种情况下日志的存在是瞬时的(例如如果 Pod 销毁后该 Pod 日志就不可见了),所以日志数据必须实时采集到服务端。同时还需要保证日志的采集能够适应这种动态性极强的场景;
  3. 日志的种类变多,上图是一个典型的 Kubernetes 架构,一个请求从客户端需要经过 CDN、Ingress、Service Mesh、Pod 等多个组件,涉及多种基础设施,其中的日志种类增加了很多,例如 K8s 各种系统组件日志、审计日志、ServiceMesh 日志、Ingress 等;
  4. 业务架构变化,现在越来越多的公司开始在 Kubernetes 上落地微服务架构,在微服务体系中,服务的开发更加复杂,服务之间的依赖以及服务底层产品的依赖越来越多,这时的问题排查将更加复杂,如果关联各个维度的日志将是一个困难的问题;
  5. 日志方案集成困难,通常我们都会在 Kubernetes 上搭建一套 CICD 系统,这套 CICD 系统需要尽可能的自动化的完成业务的集成和部署,其中日志的采集、存储、清洗等也需要集成到这套系统中,并和 K8s 的声明式部署方式尽可能一致。而现有的日志系统通常都是较独立的系统,集成到 CICD 中代价极大;
  6. 日志规模问题,通常在系统初期的时候我们会选择自建开源的日志系统,这种方式在测试验证阶段或公司发展初期是没有什么问题的,但当业务逐渐增长,日志量增长到一定规模时,自建的开源系统很多时候都会遇到各种各样的问题,例如租户隔离、查询延迟、数据可靠性、系统可用性等。日志系统虽不是 IT 中最核心的路径,但一旦关键时刻出现这些问题都将是非常可怕的影响,例如大促的时候出现紧急问题,排查时多个工程师并发查询把日志系统打爆,导致故障恢复时间变长,大促收到影响。

相信在搞 K8s 日志系统建设的同学看到上面的难点分析都会深有感触,后面我们会从落地角度出发,详细介绍在阿里我们如何去搭建 K8s 的日志系统,敬请关注。

“ 阿里巴巴云原生微信公众号(ID:Alicloudnative)关注微服务、Serverless、容器、Service Mesh等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发者的技术公众号。”

6 个 K8s 日志系统建设中的典型问题,你遇到过几个?的更多相关文章

  1. 开源物联网通讯框架ServerSuperIO,成功移植到Windows10 IOT,在物联网和集成系统建设中降低成本。附:“物联网”交流大纲

    [开源]C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 一.概述 经过一个多月晚上的时间,终于把开源物联网通讯框架ServerSuperIO成功移植到Windows10 IOT上, ...

  2. 一文看懂 K8s 日志系统设计和实践

    上一篇中我们介绍了为什么需要一个日志系统.为什么云原生下的日志系统如此重要以及云原生下日志系统的建设难点,相信DevOps.SRE.运维等同学看了是深有体会的.本篇文章单刀直入,会直接跟大家分享一下如 ...

  3. 运维平台之CMDB系统建设

    CMDB是运维的基础核心系统,所有的元数据和共享数据管理源,类似于业务中的账号平台的作用.本篇文章,我将从概念篇.模型篇.到实现与实施篇具体的进行阐述. CMDB也称配置管理,配置管理一直被认为是 I ...

  4. Android日志系统Logcat源代码简要分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6606957 在前面两篇文章Android日志系 ...

  5. ELK统一日志系统的应用

    收集和分析日志是应用开发中至关重要的一环,互联网大规模.分布式的特性决定了日志的源头越来越分散, 产生的速度越来越快,传统的手段和工具显得日益力不从心.在规模化场景下,grep.awk 无法快速发挥作 ...

  6. 基于CNONIX国家标准的出版社ERP系统建设分享

    目录 一.出版社ERP系统建设面临的三大挑战 在系统建设中如何贯彻CNONIX国家标准 新ERP系统建设面临的挑战 技术体系及架构选择面临的挑战 二.系统建设实施过程控制 项目组织管控 项目技术管控 ...

  7. 使用kubernetes-event-exporter将k8s的事件导出到elasticsearch日志系统中

    使用kubernetes-event-exporter将k8s的事件导出到elasticsearch日志系统中 前提 版本 kubernetes v1.17.9 kubernetes-event-ex ...

  8. k8s系列---EFK日志系统

    文章拷于:http://blog.itpub.net/28916011/viewspace-2216748/   用于自己备份记录错误 一个完整的k8s集群,应该包含如下六大部分:kube-dns.i ...

  9. PHP框架中的日志系统

    现在在一家公司做PHP后台开发程序猿(我们组没有前端,做活动时会做前端的东西),刚开始到公司的时候花2个周赶出了一个前端加后台的活动(记得当时做不出来周末加了两天班...),到现在过去4个多月了,可以 ...

随机推荐

  1. 算法与数据结构基础 - 分治法(Divide and Conquer)

    分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...

  2. Java 调用http接口(基于OkHttp的Http工具类方法示例)

    目录 Java 调用http接口(基于OkHttp的Http工具类方法示例) OkHttp3 MAVEN依赖 Http get操作示例 Http Post操作示例 Http 超时控制 工具类示例 Ja ...

  3. spring cloud 断路器 Hystrix

    一.微服务架构中使用断路器的原因 二.代码实现 1.在Ribbon中使用短路器 1.1.引入依赖 <dependency> <groupId>org.springframewo ...

  4. 帝国CMS(EmpireCMS) v7.5 前台XSS漏洞分析

    帝国CMS(EmpireCMS) v7.5 前台XSS漏洞分析 一.漏洞描述 该漏洞是由于javascript获取url的参数,没有经过任何过滤,直接当作a标签和img标签的href属性和src属性输 ...

  5. 『深度应用』NLP机器翻译深度学习实战课程·壹(RNN base)

    深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新 ...

  6. python webdriver 常用元素操作

    1.新建实例 xx_driver = os.path.abspath(r"路径") os.environ["webdriver.xx.driver"] = xx ...

  7. IT人不仅要提升挣钱能力,更要拓展挣钱途径

    前几天我上班路上,和小区门口开车的师傅闲聊,发现他们虽然学历不高,但挣钱的途径不少,比如固定接送多位客户,然后能通过朋友圈拓展新客户,而且通过客户口口相传,也能不断拉到生意,算下来每月也能挣1万5出头 ...

  8. Vue实现静态数据分页

    <div style="padding:20px;" id="app"> <div class="panel panel-prima ...

  9. Java和Tomcat安装教程

    jdk安装与配置1.下载好对应的jdk2.安装JDK 直接运行exe可执行程序,默认安装即可:备注:路径可以选其他盘符,路径要全部为英文. 3.配置环境变量 新建变量名:JAVA_HOME,变量值:D ...

  10. SQL奇技淫巧(01):给查出的数据排序编个号【row_number() over(order by c)】(mysql,db2,oracle,sqlserver通用)

    我们天天都在跟数据库打交道,写下的代码不计其数,写下的SQL更是可以绕地球几圈.这里收集关于SQL的神奇语法及用法,虽然你可能没有用过,但这些SQL却可以在关键的时候,派上用场. 我对SQL语句的理解 ...