科研画图:散点连接并平滑(基于Matlab和Python)
导师要求参照别人论文中的图(下图),将其论文中的图画美观些,网上关于科研画图相关的代码比较少,就自己鼓捣了下。
附上自己整合验证过的代码:
功能:将散点连接并平滑
1)Matlab
效果图:
x1=[431.50032,759.5552,1335.3736,2530.388] %输入以下三组数据
y1=[34.06366,35.73132,37.2244,38.61294]
x2=[263.8656,458.7952,839.6584,1740.9088]
y2=[33.5318074,35.1415668,36.8603528,38.244926]
x3=[253.91296,441.854,803.4116,1625.2548]
y3=[34.3625,35.88912,37.5403,38.45364]
a=linspace(min(x1),max(x1)); %插值后将散点连线平滑化
b=interp1(x1,y1,a,'cubic');
c=linspace(min(x2),max(x2));
d=interp1(x2,y2,c,'cubic');
e=linspace(min(x3),max(x3));
f=interp1(x3,y3,e,'cubic');
plot(a,b, 'LineWidth',2, 'LineSmoothing', 'on'); %画ab对应曲线,粗细,平滑
hold on
plot(c,d, 'LineWidth',2, 'LineSmoothing', 'on'); %画cd对应曲线,粗细,平滑
hold on
plot(e,f, 'LineWidth',2, 'LineSmoothing', 'on'); %画ef对应曲线,粗细,平滑
axis([0,3000,33,39]) %确定x轴与y轴框图大小
legend({'MRMV','MVDM','MVLL'},'FontSize',13,'Location','southeast','Orientation','vertical') %题注设置:名称,字号,位置,方向
xlabel('Bit rates(kbps)','FontSize',13,'FontWeight','bold') %x轴设置:标题,字号,字体粗细
ylabel('PSNR(dB)','FontSize',13,'FontWeight','bold') %y轴设置:名称,字号,字体粗细
title('Balloons','FontSize',15,'FontWeight','bold') %标题描述,名称,字号,字体粗细
set(gca,'ygrid','on','gridlinestyle','--','Gridalpha',0.3) %网格设置
grid on; %网格
print(gcf, '-dpng', '-r800', 'C:\Users\Administrator\Desktop\test.png') %保存图片,格式为png,分辨率800,保存路径
2)Python
小问题:翘尾问题需要解决
# author: Kobay time:2019/10/18
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import spline
x1 = np.array([431.50032,759.5552,1335.3736,2530.388])
y1 = np.array([34.06366,35.73132,37.2244,38.61294])
x2 = np.array([263.8656,458.7952,839.6584,1740.9088])
y2 = np.array([33.5318074,35.1415668,36.8603528,38.244926])
x3 = np.array([253.91296,441.854,803.4116,1625.2548])
y3 = np.array([34.3625,35.88912,37.5403,38.45364])
x1_new = np.linspace(x1.min(), x1.max()) # 300 represents number of points to make between T.min and T.max
y1_smooth = spline(x1, y1, x1_new)
x2_new = np.linspace(x2.min(), x2.max(), 3000) # 300 represents number of points to make between T.min and T.max
y2_smooth = spline(x2, y2, x2_new)
x3_new = np.linspace(x3.min(), x3.max(), 3000) # 300 represents number of points to make between T.min and T.max
y3_smooth = spline(x3, y3, x3_new)
# 散点图
plt.scatter(x1, y1, c='black', alpha=0.5) # alpha:透明度) c:颜色
# 折线图
plt.plot(x1, y1, linewidth=1) # 线宽linewidth=1matl
# 平滑后的折线图
plt.plot(x1_new, y1_smooth, c='blue',label='MRMV')
plt.plot(x2_new, y2_smooth, c='orange',label='MVDM')
plt.plot(x3_new, y3_smooth, c='gray',label='MVLL')
# 解决中文显示问题
# plt.rcParams['font.sans-serif'] = ['SimHei'] # SimHei黑体
# plt.rcParams['axes.unicode_minus'] = False
plt.title("Balloons", fontdict={'family' : 'Calibri', 'size': 16,'weight':'bold'}) # 标题及字号
plt.xlabel("Bit rates(kbps)", fontdict={'family' : 'Calibri', 'size': 14,'weight':'bold'}) # X轴标题及字号
plt.ylabel("PSNR(dB)", fontdict={'family' : 'Calibri', 'size': 14,'weight':'bold'}) # Y轴标题及字号
plt.tick_params(axis='both', labelsize=14) # 刻度大小
plt.axis([0, 3000, 33, 39])#设置坐标轴的取值范围
plt.grid(linestyle='-.')
plt.legend(loc=4)
plt.show()
# plt.save('squares_plot.png'(文件名), bbox_inches='tight'(将图表多余的空白部分剪掉))
# 用它替换plt.show实现自动保存图表
码字不易,如果您觉得有帮助,麻烦点个赞再走呗~
科研画图:散点连接并平滑(基于Matlab和Python)的更多相关文章
- 基于MATLAB的腐蚀膨胀算法实现
本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像 ...
- 基于MATLAB边缘检测算子的实现
基于MATLAB边缘检测算子的实现 作者:lee神 1. 概述 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点.图像属性中的显著变化通常反映了属性的重要 ...
- 基于MATLAB的中值滤波均值滤波以及高斯滤波的实现
基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1. 背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤 ...
- [ZZ] 基于Matlab的标记分水岭分割算法
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching obj ...
- 基于MATLAB的多项式数据拟合方法研究-毕业论文
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...
- DIY一个基于树莓派和Python的无人机视觉跟踪系统
DIY一个基于树莓派和Python的无人机视觉跟踪系统 无人机通过图传将航拍到的图像存储并实时传送回地面站差点儿已经是标配.假设想来点高级的--在无人机上直接处理拍摄的图像并实现自己主动控制要怎么实现 ...
- 数字图像处理:基于MATLAB的车牌识别项目 标签: 图像处理matlab算法 2017-06-24 09:17 98人阅读 评论(0)
学过了数字图像处理,就进行一个综合性强的小项目来巩固一下知识吧.前阵子编写调试了一套基于MATLAB的车牌识别的项目的代码.今天又重新改进了一下代码,识别的效果好一点了,也精简了一些代码.这里没有使用 ...
- 基于Appium、Python的自动化测试
基于Appium.Python的自动化测试环境部署和实践 第一章 导言 1.1 编制目的 该文档为选用Appium作为移动设备原生(Native).混合(Hybrid).移动Web(Mobile ...
- 基于MATLAB的手写公式识别(5)
基于MATLAB的手写公式识别 总结一下昨天一天的工作成果: 获得了大致的识别过程. 一个图像从生肉到可以被处理需要经过预处理(灰质化.增加对比度.中值过滤.膨胀或腐蚀.闭环运算). 掌握了相关函数的 ...
随机推荐
- Spring Boot Failed to load resource: the server responded with a status of 404 ()
出现错误: Failed to load resource: the server responded with a status of 404 () 但是其他页面正常显示: 原因: 浏览器看一下: ...
- Linux 周期任务
一次性任务 在某个特定的时间,执行一次后被清除 相关命令/进程 at 命令 atd进程 在centos6中,系统服务的名称: /etc/init.d/atd 查看系统上该进程时候启动: [root@e ...
- Checkedlistbox只能单选不能多选
private void Checkedlistbox_ItemCheck(object sender, ItemCheckEventArgs e) { ; i < chkCountry.Ite ...
- ubuntu安装navicat
ubuntu下安装navicat1.官网下载https://www.navicat.com.cn/download/navicat-premium,不清楚系统是32位的还是64位的,可以用”uname ...
- 5.Ansible Jinja2 模板
1.jinja2渲染NginxProxy配置文件 jinja2 房屋建筑设计固定的 jinja2模板与Ansible关系 Ansible如何使用jinja2模板 template模块 拷贝文件? te ...
- JS---DOM---点击操作---part1---20个案例
点击操作:------>事件: 就是一件事, 有触发和响应, 事件源 按钮被点击,弹出对话框 按钮---->事件源 点击---->事件名字 被点了--->触发了 弹框了---& ...
- 搭建mount+nfs远程挂载
需求背景: 192.168.10.100 源服务器 目录:/root/test 目录属主属组普通用户,权限777 192.168.10.111 目标服务器 目录:/root/test111 目录属主属 ...
- 【搬了一套别人的cf】
自己打了一堆没保存瞬间全没了.... 没有继续写的欲望 https://www.cnblogs.com/tea-egg/p/11664350.html
- InnoSetup跨脚本传参数
需求:在a.iss脚本传递参数给b.iss 举例: a.iss:传程序安装路径给b.iss Parameters: /Path={app} b.iss:接收a.iss传过来的安装路径 DefaultD ...
- Java每日一面(Part1:计算机网络)[19/11/02]
作者:故事我忘了¢个人微信公众号:程序猿的月光宝盒 1.TCP的滑动窗口 1.1 RTT和RTO的区别 RTT:发送一个数据包到收到对应的ACK,所花费的时间 RTO:重传时间间隔,TCP在发 ...