Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1770    Accepted Submission(s): 1089

Problem Description

Alice and Bob are playing a game.

The game is played on a set of positive integers from 1 to n.

In one step, the player can choose a positive integer from the set, and erase all of its divisors from the set. If a divisor doesn't exist it will be ignored.

Alice and Bob choose in turn, the one who cannot choose (current set is empty) loses.

Alice goes first, she wanna know whether she can win. Please judge by outputing 'Yes' or 'No'.

Input

There might be multiple test cases, no more than 10. You need to read till the end of input.

For each test case, a line containing an integer n. (1≤n≤500)

Output

A line for each test case, 'Yes' or 'No'.

Sample Input

1

Sample Output

Yes

题意:A和B在一串数字上操作,数字范围为1-n, 每次只能取一个数及其它的所有因子,那个先不能操作,那个先输;

题解:如果存在B胜的状态,那么A也能到达,所以本题对于A来说只有必胜态。

#include<bits/stdc++.h>
#define ios1 ios::sync_with_stdio(0)
#define ios2 cin.tie(0)
#define LL long long
#define INF 0x3f3f3f3f
using namespace std; int main() {
int n;
while(scanf("%d", &n) == 1) {
printf("Yes\n");
}
return 0;
}

Naive Operations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)

Total Submission(s): 1899    Accepted Submission(s): 258

Problem Description

In a galaxy far, far away, there are two integer sequence a and b of length n.

b is a static permutation of 1 to n. Initially a is filled with zeroes.

There are two kind of operations:

1. add l r: add one for al,al+1...ar

2. query l r: query ∑ri=lai/bi

Input

There are multiple test cases, please read till the end of input file.

For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.

In the second line, n integers separated by spaces, representing permutation b.

In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.

1≤n,q≤100000, 1≤lrn, there're no more than 5 test cases.

Output

Output the answer for each 'query', each one line.

Sample Input

5 12

1 5 2 4 3

add 1 4

query 1 4

add 2 5

query 2 5

add 3 5

query 1 5

add 2 4

query 1 4

add 2 5

query 2 5

add 2 2

query 1 5

Sample Output

1

1

2

4

4

6

题意:n个数,2种操作,2个数组,a数组初始都为0,然后给了b数组的值,

add 是给l到r都加1,query是查询l到r的

∑ri=⌊ai/bi⌋的和.

思路:我们只需维护b数组的区间最小值就可以了,由于这个是向下取整,因此只有当bi减为0的时候才会对所求的区间有贡献值,所以对a数组的加1的操作,相当于对b数组的减1的操作.

如果区间的最小值min>1,那么min--,否则向下查找;  min>1的子区间继续之前的操作,min==1的让贡献值加1,所属的值变为本来的值

/**
add a b c:把区间[a,b]内的所有数都增加 c
sum a b:查询区间[a,b]的区间和
min a b:查询区间[a,b]的最小值
*/
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
const long long INF = 1LL << 62;
struct Segment_tree {
struct Node {
int l, r;///左右区间
int sum, min, add_lazy;///贡献值, 区间最小值, 标记
} tre[maxn << 2];
int arr[maxn];
inline void push_up(int rt) {
if(tre[rt].l == tre[rt].r) {
return ;
}
tre[rt].sum = tre[rt<<1].sum + tre[rt<<1|1].sum;
tre[rt].min = min(tre[rt<<1].min, tre[rt<<1|1].min);
}
inline void push_down(int rt) {
if(tre[rt].add_lazy) {
tre[rt<<1].add_lazy += tre[rt].add_lazy;
tre[rt<<1].min -= tre[rt].add_lazy;
tre[rt<<1|1].add_lazy += tre[rt].add_lazy;
tre[rt<<1|1].min -= tre[rt].add_lazy;
tre[rt].add_lazy = 0;
}
}
void build(int rt,int l,int r) {
tre[rt].l = l;
tre[rt].r = r;
tre[rt].add_lazy = 0;
if(l == r) {
tre[rt].sum = 0;
tre[rt].min = arr[l];
return ;
}
int mid = (l + r) >> 1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
push_up(rt);
}
void update1(int rt,int l,int r) { ///add
push_down(rt);
if(l == tre[rt].l && tre[rt].r == r && tre[rt].min > 1) {
tre[rt].add_lazy += 1;
tre[rt].min -= 1;
return ;
}
if(tre[rt].l == tre[rt].r) {
tre[rt].add_lazy += 1;
tre[rt].min -= 1;
if(tre[rt].min <= 0) {
tre[rt].min = arr[l];
tre[rt].sum += 1;
}
return ;
}
int mid = (tre[rt].l + tre[rt].r) >> 1;
if(r <= mid) {
update1(rt<<1,l,r);
} else if(l > mid) {
update1(rt<<1|1,l,r);
} else {
update1(rt<<1,l,mid);
update1(rt<<1|1,mid+1,r);
}
push_up(rt);
}
int query1(int rt,int l,int r) { ///sum
push_down(rt);
if(l == tre[rt].l && tre[rt].r == r) {
return tre[rt].sum;
}
int mid = (tre[rt].l + tre[rt].r) >> 1;
if(r <= mid) {
return query1(rt<<1,l,r);
} else if(l > mid) {
return query1(rt<<1|1,l,r);
} else {
return query1(rt<<1,l,mid) + query1(rt<<1|1,mid+1,r);
}
}
} S; int main() {
int n, q;
while(cin >> n >> q) {
for(int i = 1; i <= n; i++) {
scanf("%d", &S.arr[i]);
}
S.build(1, 1, n);
string s;
int l, r;
while(q--) {
cin >> s >> l >> r;
if(s == "add") {
S.update1(1, l, r);
}
else {
cout << S.query1(1, l, r) << endl;
}
}
}
return 0;
}

2018 Multi-University Training Contest 2(部分题解)的更多相关文章

  1. 2018 Multi-University Training Contest 3(部分题解)

    Problem F. Grab The Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Ja ...

  2. 2018 Multi-University Training Contest 1(部分题解)

    Maximum Multiple Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. 2018 Multi-University Training Contest - Team 1 题解

    Solved A HDU 6298 Maximum Multiple Solved B HDU 6299 Balanced Sequence Solved C HDU 6300 Triangle Pa ...

  4. 2018 Nowcoder Multi-University Training Contest 2

    目录 Contest Info Solutions A. run D. monrey G. transform H. travel I. car J. farm Contest Info Practi ...

  5. 2016 Multi-University Training Contest 3 部分题解

    1001,只要枚举区间即可.签到题,要注意的是输入0的话也是“TAT”.不过今天补题的时候却WA了好几次,觉得奇怪.原来出现在判断条件那里,x是一个int64类型的变量,在进行(x<65536* ...

  6. 2016 Multi-University Training Contest 1 部分题解

    第一场多校,出了一题,,没有挂零还算欣慰. 1001,求最小生成树和,确定了最小生成树后任意两点间的距离的最小数学期望.当时就有点矛盾,为什么是求最小的数学期望以及为什么题目给了每条边都不相等的条件. ...

  7. 2016 Multi-University Training Contest 4 部分题解

    1001,官方题解是直接dp,首先dp[i]表示到i位置的种类数,它首先应该等于dp[i-1],(假设m是B串的长度)同时,如果(i-m+1)这个位置开始到i这个位置的这一串是和B串相同的,那么dp[ ...

  8. 2018 Nowcoder Multi-University Training Contest 1

    Practice Link J. Different Integers 题意: 给出\(n\)个数,每次询问\((l_i, r_i)\),表示\(a_1, \cdots, a_i, a_j, \cdo ...

  9. 2018 Nowcoder Multi-University Training Contest 5

    Practice Link A. gpa 题意: 有\(n\)门课程,每门课程的学分为\(s_i\),绩点为\(c_i\),要求最多删除\(k\)门课程,使得gpa最高. gpa计算方式如下: \[ ...

随机推荐

  1. CentOS 7.3下使用YUM 安装MySQL5.6

    1.检查Linux系统中是否已安装 MySQL rpm -qa | grep mysql 返回空值的话,就说明没有安装 MySQL 注意:在新版本的CentOS7中,默认的数据库已更新为了Mariad ...

  2. kali Metasploit 连接 Postgresql 默认密码

    使用 metasploit 时, 1. 启动 postgresql service postgresql start 2. 自行测试 postgresql 是否安装成功 根据需要,自行 修改 post ...

  3. 【简洁易懂】CF372C Watching Fireworks is Fun dp + 单调队列优化 dp优化 ACM codeforces

    题目大意 一条街道有$n$个区域. 从左到右编号为$1$到$n$. 相邻区域之间的距离为$1$. 在节日期间,有$m$次烟花要燃放. 第$i$次烟花燃放区域为$a_i$ ,幸福属性为$b_i$,时间为 ...

  4. 转载 | CSS图片下面产生间隙的 6种解决方案

    在进行页面的DIV+CSS排版时,遇到IE6(当然有时Firefox下也会偶遇)浏览器中的图片元素img下出现多余空白的问题绝对是常见的对於 该问题的解决方法也是「见机行事」,根据原因的不同要用不同的 ...

  5. java swing 开发 -JTable

    最近利用空闲时间自己琢磨了一下java swing 编程,其实在从事javaweb之前我一直向往的就是java swing 开发,不知道为什么可能当时觉得Windows上的exe程序很是神奇,关于wi ...

  6. 集合中Iterator迭代器的使用以及实现原理。

    collection集合元素通用的获取方式,在取之前先要判断集合中有没有元素,如果有就把这个元素取出来,继续在判断,如果还有就再取出来,一直把集合中的元素全取出来,这种去出方式叫做迭代. 迭代器的作用 ...

  7. Springboot源码分析之jar探秘

    摘要: 利用IDEA等工具打包会出现springboot-0.0.1-SNAPSHOT.jar,springboot-0.0.1-SNAPSHOT.jar.original,前面说过它们之间的关系了, ...

  8. 你是否真的了解全局解析锁(GIL)

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...

  9. spring全家桶的pom的基本配置

    <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...

  10. Flutter学习笔记(24)--SingleChildScrollView滚动组件

    如需转载,请注明出处:Flutter学习笔记(23)--多 在我们实际的项目开发中,经常会遇到页面UI内容过多,导致手机一屏展示不完的情况出现,以Android为例,在Android中遇到这类情况的做 ...