最长上升子序列模板 hdu 1087 Super Jumping! Jumping! Jumping!
The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.
InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
OutputFor each case, print the maximum according to rules, and one line one case.
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
Sample Output
4
10
3 求一串递增的数字总和的最大值 借这里放下最长上升子序列的模板(求最大长度和最大总和的)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<cmath>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const int inf = 1e9;
int a[], dp[], num[], n;
int calc( int sign ) { //求最长,nlog(n)
fill( dp, dp+, inf );
int ans = ;
for( int i = ; i < n; i ++ ) {
int index = lower_bound( dp, dp+ans, a[i]*sign ) - dp; //lower为求严格递增,upper为求非严格递增
dp[index] = a[i]*sign;
ans = max( ans, index + );
}
return ans;
}
int lins() {
return calc();
}
int lnds() {
return calc(-);
}
int calc_max() { //求最大,n^2
int ans = ;
for( int i = ; i < n; i ++ ) {
dp[i] = a[i];
for( int j = ; j < i; j ++ ) {
if( a[j] < a[i] ) {
dp[i] = max( dp[i], dp[j]+a[i] );
}
}
ans = max( ans, dp[i] );
}
return ans;
}
int main() {
std::ios::sync_with_stdio(false);
while( cin >> n ) {
memset( num, , sizeof(num) );
if( !n ) {
break;
}
for( int i = ; i < n; i ++ ) {
cin >> a[i];
}
cout << calc_max() << endl;
}
return ;
}
最长上升子序列模板 hdu 1087 Super Jumping! Jumping! Jumping!的更多相关文章
- 【最长上升子序列】HDU 1087——Super Jumping! Jumping! Jumping!
来源:点击打开链接 最长上升子序列的考察,是一个简单的DP问题.我们每一次求出从第一个数到当前这个数的最长上升子序列,直至遍历到最后一个数字为止,然后再取dp数组里最大的那个即为整个序列的最长上升子序 ...
- HDU 1087 Super Jumping! Jumping! Jumping
HDU 1087 题目大意:给定一个序列,只能走比当前位置大的位置,不可回头,求能得到的和的最大值.(其实就是求最大上升(可不连续)子序列和) 解题思路:可以定义状态dp[i]表示以a[i]为结尾的上 ...
- HDU 1087 Super Jumping! Jumping! Jumping! 最长递增子序列(求可能的递增序列的和的最大值) *
Super Jumping! Jumping! Jumping! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64 ...
- HDU - 1087 Super Jumping!Jumping!Jumping!(dp求最长上升子序列的和)
传送门:HDU_1087 题意:现在要玩一个跳棋类游戏,有棋盘和棋子.从棋子st开始,跳到棋子en结束.跳动棋子的规则是下一个落脚的棋子的号码必须要大于当前棋子的号码.st的号是所有棋子中最小的,en ...
- hdu 1087 Super Jumping!(类最长上升子序列)
题意:在一组数中选取一个上升子序列,使得这个子序列的和最大. 解:和最长上升子序列dp过程相似,设dp[i]为以第i位为结尾最大和,那么dp[i]等于max(dp[0],dp[1],,,,,dp[i- ...
- HDU 1087 Super Jumping! Jumping! Jumping! (动态规划、最大上升子序列和)
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1087 Super Jumping! Jumping! Jumping! --- DP入门之最大递增子序列
DP基础题 DP[i]表示以a[i]结尾所能得到的最大值 但是a[n-1]不一定是整个序列能得到的最大值 #include <bits/stdc++.h> using namespace ...
- HDU 1087 Super Jumping! Jumping! Jumping! --- DP入门之最大上升子序列
题目链接 DP基础题 求的是上升子序列的最大和 而不是最长上升子序列LIS DP[i]表示以a[i]结尾所能得到的最大值 但是a[n-1]不一定是整个序列能得到的最大值 #include <bi ...
- HDU 1087 Super Jumping! Jumping! Jumping!(求LSI序列元素的和,改一下LIS转移方程)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 20 ...
随机推荐
- Ubuntu+VMWare 学习中遇到的问题
1. 虚拟机中Ubuntu分辨率 / 设置分辨率出现Unknown Display VMware中Ubuntu 出现Unknown Display问题解决 1.1 命令无法保存分辨率设置: xrand ...
- Another option to bootup evidence files
When it comes to booting up evidence files acquired from target disk, you got two options. One is VF ...
- 自定义itemCheckView
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- Leetcode的SQL题解:185. 部门工资前三高的员工
题目 查询部门工资前三高的员工. 我用的数据库是oracle. 下面是数据表的信息. Employee表数据: | ID | NAME | Salary | DepartmentId | | -- | ...
- java虚拟机学习笔记(六)---垃圾收集算法
主要讨论集中垃圾收集算法的思想及发展过程. 1.标记-清除法 最基础的收集算法是标记-清除法,算法分为标记和清除两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象,其标记过程 ...
- vue 辅助开发工具(利用node自动生成相关文件,自动注册路由)
vue 辅助开发工具 前言 有没有因为新建view,component,store的繁琐操作而苦恼,需要新建文件件,新建vue文件,新建js文件,注册路由...等一系列无价值操作浪费时间,为了解决这个 ...
- linux应用问题分析命令
1. 描述 应用问题分析方式及命令有很多,一般都结合着使用,今天主要介绍下: (1)top命令,实时查看服务器资源使用情况,类似windows下的资源管理器: (2)tail命令,实时刷新查看日志命令 ...
- python小白手册之字符串的私有方法和公用方法
#字符串方法. name=input('1111') if name.isalnum(): print(是否由数字字母) isdigit isdecimal判断数字 strip去空格或者其他 name ...
- python代码规范整理
规范参考源: 1.pep8(python代码样式规范):中文文档 https://blog.csdn.net/ratsniper/article/details/78954852 2.pep ...
- 小白学Python(1)——安装与调试,“你好,世界”,“hello,world”
之前从没接触过编程之类的东西,在网上下载个自己需要的软件真实比较麻烦,找了半天总是没有合适的,好不容易找到了,不过那家公司已经倒闭了,软件不更新也运行不了了,于是乎,求人不如求己,自己没事编程吧. 在 ...