Alternating Sum

题意很简单 就是对一个数列求和。

题解:如果不考虑符号 每一项都是前一项的 (b/a)倍, 然后考虑到符号的话, 符号k次一循环, 那么 下一个同一符号的位置 就是 这一个位置的 (b/a)^k倍了, 然后我们可以发现这个是一个等比数列, 最后我们对等比数列求和就好了。

注意的就是 (b/a)^k % mod == 1的情况,我们可以将前K个数总和在一起, 在一起求等比的和就好了。

我们可以将公式 cir*(1-q^time) / (1 - q) 其中q = (b/a)^k 转化成 cir * (a1^(time*k) - b^(time*k)) / (a1^(time*k) - b^k * a ^((t-1)*k)) 然后因为要进行mod操作 所以 再转换成 cir * (a1^(time*k) - b^(time*k)) *inv( (a1^(time*k) - b^k * a ^((t-1)*k))) 就好了。

代码:

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const LL mod = 1e9+;
const int N = 1e5+;
int n, a, b, k;
char str[N];
LL qpow(int a, int b){
LL ret = ;
while(b){
if(b&) ret = (ret*a)%mod;
a = (a%mod*a%mod) % mod;
b >>= ;
}
return ret%mod;
}
int main(){
scanf("%d%d%d%d",&n,&a,&b,&k);
scanf("%s", str);
int len = strlen(str);
LL ans = ;
LL tmp, cir = ;
for(int i = ; i < len; i++){
tmp = qpow(a,n-i) * qpow(b,i) % mod;
if(str[i] == '+') {
cir += tmp;
cir %= mod;
}
else {
cir -= tmp;
if(cir < ) cir += mod;
cir %= mod;
}
}
int time = (n+) / len;
int lf = n+ - len*time;
int be = len*time;
for(int i = ; be <= n; i++, be++){
tmp = qpow(a,n-be) * qpow(b,be) % mod;
if(str[i] == '+') {
ans += tmp;
ans %= mod;
}
else {
ans -= tmp;
if(ans < ) ans += mod;
ans %= mod;
}
}
LL t1 = (qpow(a,len*time) - qpow(b,len*time))%mod;
if(t1 < ) t1 += mod;
LL t2 = (qpow(a,len*time) % mod - qpow(b,len)*qpow(a,(time-)*len)%mod) %mod;
if(t2 < ) t2 += mod;
LL t3 = t1 *(qpow(t2,mod-))% mod;
if(t2!=){
ans = (ans + cir * t3 % mod)%mod;
}
else {
ans = (ans+cir*time%mod)%mod;
}
printf("%I64d", ans);
return ;
}
/*
8 2 3 2
++
*/

Codeforces 964C Alternating Sum的更多相关文章

  1. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  2. Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)

    题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...

  3. CF 964C Alternating Sum

    给定两正整数 $a, b$ .给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输 ...

  4. Codeforces 963A Alternating Sum ( 思维 && 数论 )

    题意 : 题目链接 分析 : Tutorial 讲的很清楚 至于为什么这样去考虑 算是一个经验问题吧 如果一个问题要你给出模意义下的答案 就多考虑一下答案是要用逆元构造出来 也就说明有除法的存在 那么 ...

  5. Codeforces 963E Alternating Sum 等比数列+逆元

    题目大意: 看一下样例就明白了 基本思路: 题目中明确提到k为一个周期,稍作思考,把k项看作一项,然后发现这是个等比数列,q=(b/a)^k, 然后重点就是怎样处理等比数列求和表达式中的除法,这个时候 ...

  6. Codeforces 963 A. Alternating Sum(快速幂,逆元)

    Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...

  7. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  8. CF963A Alternating Sum

    思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...

  9. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

随机推荐

  1. Mac相关快捷键操作

    拷贝: shift + option + 拖动拖动至目的地 创建快捷方式: option + command + 拖动至目的地

  2. PID算法资料【视频+PDF介绍】

    最近一直有网友看到我的博客后,加我好友,问我能不能给发一些PID的资料,今天找了一些资料放到百度网盘上,给大家下载: 视频资料 链接:https://pan.baidu.com/s/12_IlLgBI ...

  3. 使用eclipse编写和运行java程序(基础)

    1.首先java程序的运行你需要下载和安装JDK,这是java运行的必备环境. 2.在桌面上找到eclipes,双击打开. 3.在eclipes启动的过程中,会弹出一个窗口,让你填写java工作区的保 ...

  4. powermockito单元测试之深入实践

    概述 由于最近工作需要, 在项目中要做单元测试, 以达到指定的测试用例覆盖率指标.项目中我们引入的powermockito来编写测试用例, JaCoCo来监控单元测试覆盖率.关于框架的选择, 网上讨论 ...

  5. Apache NiFi 核心概念和关键特性

    本文来源于官方文档翻译 NiFi 的核心概念 NiFi 最早是美国国家安全局内部使用的工具,用来投递海量的传感器数据.后来由 apache 基金会开源.天生就具备强大的基因.NiFi基本设计理念与 F ...

  6. 【POJ - 2229】Sumsets(完全背包)

    Sumsets 直接翻译了 Descriptions Farmer John 让奶牛们找一些数加起来等于一个给出的数N.但是奶牛们只会用2的整数幂.下面是凑出7的方式 1) 1+1+1+1+1+1+1 ...

  7. SonarQube系列二、分析dotnet core/C#代码

    [前言] 本系列主要讲述sonarqube的安装部署以及如何集成jenkins自动化分析.netcore项目.目录如下: SonarQube系列一.Linux安装与部署 SonarQube系列二.分析 ...

  8. 每天用SpringBoot,还不懂RESTful API返回统一数据格式是怎么实现的?

    上一篇文章RESTful API 返回统一JSON数据格式 说明了 RESTful API 统一返回数据格式问题,这是请求一切正常的情形,这篇文章将说明如何统一处理异常,以及其背后的实现原理,老套路, ...

  9. python第一课--基础知识

    python简介 Python是一种计算机程序设计语言.是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的.大型项目的 ...

  10. 设计一个完美的http缓存策略

    1.前言 作为一个前端,了解http缓存是非常必要,它不仅是面试的必要环节,也更是实战开发中必不可少需要了解的知识点,本文作者将从缓存的概念讲到如何在业务中设计一个合理的缓存架构,带你一步一步解开ht ...