偏差和方差以及偏差方差权衡(Bias Variance Trade off)
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的?
我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance):
这是一张常见的靶心图
可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差
再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差
模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差
不可避免的误差: 客观存在的误差,例如采集的数据的噪音等,是我们无法避免的
- 有一些算法天生是高方差的算法。如kNN,决策树等
- 非参数学习通常都是高方差算法。因为不对数据进行任何假设
- 有一些算法天生是高偏差算法。如线性回归
- 参数学习通常都是高偏差算法。因为堆数据具有极强的假设
大多数算法具有相应的参数,可以调整偏差和方差, 比如kNN中的k和线性回归中使用多项式回归。
偏差和方差通常是矛盾的,我们要在两者之间找到一个平衡
在机器学习领域,主要的挑战来自方差,当然主要是在算法方面,实际问题中原因不尽相同
解决高方差的通常手段:
1.降低模型复杂度
2.减少数据维度;降噪
3.增加样本数
4.使用验证集
5.模型正则化
偏差和方差以及偏差方差权衡(Bias Variance Trade off)的更多相关文章
- 【笔记】偏差方差权衡 Bias Variance Trade off
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...
- 机器学习:偏差方差权衡(Bias Variance Trade off)
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...
- [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
- Bias, Variance and the Trade-off
偏差,方差以及两者权衡 偏差是由模型简化的假设,使目标函数更容易学习. 一般来说,参数化算法有很高的偏差,使它们学习起来更快,更容易理解,但通常不那么灵活.反过来,它们在复杂问题上的预测性能更低,无法 ...
- 机器学习总结-bias–variance tradeoff
bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\( ...
- 2.9 Model Selection and the Bias–Variance Tradeoff
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...
- 训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(d ...
随机推荐
- Bzoj 2733: [HNOI2012]永无乡 数组Splay+启发式合并
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3955 Solved: 2112[Submit][Statu ...
- 《ElasticSearch6.x实战教程》之准备工作、基本术语
第一章-准备工作 工欲善其事必先利其器 ElasticSearch安装 ElasticSearch6.3.2下载地址(Linux.mac OS.Windows通用,下载zip包即可):https:// ...
- MyBatis 多数据库支持
From<MyBatis从入门到精通> <!-- 4.6 多数据库支持 简单的看了一下,没有深入研究~~~ -->
- python基础知识六 文件的基本操作+菜中菜
基础知识六 文件操作 open():打开 file:文件的位置(路径) mode:操作文件模式 encoding:文件编码方式 f :文件句柄 f = open("1.t ...
- MySql的数据库优化到底优啥了都??(1)
嘟嘟最不愿意做的就是翻招聘信息. 因为一翻招聘信息,工作经历你写低于两年都不好意思,前后端必须炉火纯青融汇贯通,各式框架必须如数家珍不写精通咋的你也得熟练熟练, 对了你是985吗?你是211吗??你不 ...
- vue2.0 富文本组件(基于wangeditor)
1. 本组件基于 wangeditor http://www.wangeditor.com/ 如有侵权 请告知, 2. 效果图 3. 依赖安装 package.json 中 devDependenci ...
- Unity AR Foundation 和 CoreML: 实现手部的检测和追踪
0x00 前言 Unity的AR Foundation通过上层抽象,对ARKit和ARCore这些底层接口进行了封装,从而实现了AR项目的跨平台开发能力. 而苹果的CoreML是一个可以用来将机器学习 ...
- 【MySQL】(三)文件
本篇文章分析构成MySQL数据库和InnoDB存储引擎表的各种累类型文件.这些文件有以下这些. 参数文件:告诉MySQL实例启动时在哪里可以找到数据库文件,并且指定某些初始化参数,这些参数定义了某种内 ...
- Java中返回值定义为int类型的 方法return 1返回的是int还是Integer&&finally中return问题
在Java中返回值定义为int类型的 方法return 1:中返回的是Integer值,在返回的时候基本类型值1被封装为Integer类型. 定义一个Test类,在异常处理try中和finally中分 ...
- 必懂的wenpack优化
webpack优化 1.production 模式打包自带优化 tree shaking tree shaking是一个术语.通常用于打包时移除js中未引用的代码(dead-code),它依赖于ES6 ...