偏差和方差以及偏差方差权衡(Bias Variance Trade off)
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的?
我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance):

这是一张常见的靶心图
可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差
再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差
模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差
不可避免的误差: 客观存在的误差,例如采集的数据的噪音等,是我们无法避免的
- 有一些算法天生是高方差的算法。如kNN,决策树等
- 非参数学习通常都是高方差算法。因为不对数据进行任何假设
- 有一些算法天生是高偏差算法。如线性回归
- 参数学习通常都是高偏差算法。因为堆数据具有极强的假设
大多数算法具有相应的参数,可以调整偏差和方差, 比如kNN中的k和线性回归中使用多项式回归。
偏差和方差通常是矛盾的,我们要在两者之间找到一个平衡
在机器学习领域,主要的挑战来自方差,当然主要是在算法方面,实际问题中原因不尽相同
解决高方差的通常手段:
1.降低模型复杂度
2.减少数据维度;降噪
3.增加样本数
4.使用验证集
5.模型正则化
偏差和方差以及偏差方差权衡(Bias Variance Trade off)的更多相关文章
- 【笔记】偏差方差权衡 Bias Variance Trade off
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...
- 机器学习:偏差方差权衡(Bias Variance Trade off)
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...
- [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
- Bias, Variance and the Trade-off
偏差,方差以及两者权衡 偏差是由模型简化的假设,使目标函数更容易学习. 一般来说,参数化算法有很高的偏差,使它们学习起来更快,更容易理解,但通常不那么灵活.反过来,它们在复杂问题上的预测性能更低,无法 ...
- 机器学习总结-bias–variance tradeoff
bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\( ...
- 2.9 Model Selection and the Bias–Variance Tradeoff
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...
- 训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(d ...
随机推荐
- 9.22考试 crf的军训 题解
做这道题时由于第一道题太水了,第一反应是NOIP T2级别的题,需要拿上70~100的分,然后就开始分析,当然最后事实证明我错了…… 这道题当时首先联想到了 NOIP2016愤怒的小鸟 当然,数据范围 ...
- CAD2014学习笔记-图层图案图块
基于 虎课网huke88.com CAD教程 对象特性 选择对象点击特性栏/或右键点击特性 颜色:color 图层 线型:线的类型,如点状线.虚线等,若不改变则默认新建的线为该类型 线型比例:不同类型 ...
- samba搭建与配置说明
1. 环境检查getenforce 检查selinux service iptables stop 2.安装samba yum -y install samba 3.配置samba /etc/samb ...
- 比赛:小奔与不等四边形solution
题目: 题目背景 有这样一道经典的数学题:已知一个四边形的边长是四个连续的正整数,求证这个四边形的面积的最大值不为整数.小奔轻松地证明了这个问题,现在问题来了,大奔要求小奔以最快的速度算出给定边长的四 ...
- Spark学习之RDD
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...
- python虚拟环境管理 Pipenv 使用说明
安装 pip install pipenv 检查是否安装成功 pipenv --version 创建虚拟环境(在工程文件夹下) pipenv install 默认下,Pipenv统一管理所有虚拟环境 ...
- “朕赐给你,才是你的;朕不给,你不能抢”--custome role在Azure权限管理中的简单实践
在开始详细讨论技术问题之前,有一些个人观点想发表一下: ---作为一个甲方云平台的掌控着,如果任何事情你都是让partner全部帮你搞定,自己既不审核也不研究,那无论是对于公司还是个人发展来说都是没任 ...
- 高级MySQL
一.MySQL的架构介绍 1.高级MySQL MySQL内核 SQL优化 MySQL服务器的优化 各种参数常亮设定 查询语句优化 主从复制 软硬件升级 容灾备份 SQL编程 2.MySQL的Linux ...
- [Abp vNext 源码分析] - 6. DDD 的应用层支持 (应用服务)
一.简要介绍 ABP vNext 针对于应用服务层,为我们单独设计了一个模块进行实现,即 Volo.Abp.Ddd.Application 模块. PS:最近博主也是在恶补 DDD 相关的知识,这里推 ...
- java并发笔记之java线程模型
警告⚠️:本文耗时很长,先做好心理准备 java当中的线程和操作系统的线程是什么关系? 猜想: java thread —-对应-—> OS thread Linux关于操作系统的线程控制源码: ...