偏差和方差以及偏差方差权衡(Bias Variance Trade off)
当我们在机器学习领域进行模型训练时,出现的误差是如何分类的?
我们首先来看一下,什么叫偏差(Bias),什么叫方差(Variance):
这是一张常见的靶心图
可以看左下角的这一张图,如果我们的目标是打靶子的话,我们所有的点全都完全的偏离了这个中心的位置,那么这种情况就叫做偏差
再看右上角这张图片,我么们的目标是右上角这张图片中心的红色位置,我们射击的点都围绕在这个红色的点的周围,没有大的偏差,但是各个点间过于分散不集中,就是有非常高的方差
模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差
不可避免的误差: 客观存在的误差,例如采集的数据的噪音等,是我们无法避免的
- 有一些算法天生是高方差的算法。如kNN,决策树等
- 非参数学习通常都是高方差算法。因为不对数据进行任何假设
- 有一些算法天生是高偏差算法。如线性回归
- 参数学习通常都是高偏差算法。因为堆数据具有极强的假设
大多数算法具有相应的参数,可以调整偏差和方差, 比如kNN中的k和线性回归中使用多项式回归。
偏差和方差通常是矛盾的,我们要在两者之间找到一个平衡
在机器学习领域,主要的挑战来自方差,当然主要是在算法方面,实际问题中原因不尽相同
解决高方差的通常手段:
1.降低模型复杂度
2.减少数据维度;降噪
3.增加样本数
4.使用验证集
5.模型正则化
偏差和方差以及偏差方差权衡(Bias Variance Trade off)的更多相关文章
- 【笔记】偏差方差权衡 Bias Variance Trade off
偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...
- 机器学习:偏差方差权衡(Bias Variance Trade off)
一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...
- [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
- Bias, Variance and the Trade-off
偏差,方差以及两者权衡 偏差是由模型简化的假设,使目标函数更容易学习. 一般来说,参数化算法有很高的偏差,使它们学习起来更快,更容易理解,但通常不那么灵活.反过来,它们在复杂问题上的预测性能更低,无法 ...
- 机器学习总结-bias–variance tradeoff
bias–variance tradeoff 通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\).设我们不知道的真实的\( ...
- 2.9 Model Selection and the Bias–Variance Tradeoff
结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...
- 训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(d ...
随机推荐
- I/O:OutputStream
OutputStream: void close() :关闭此输出流并释放与此流有关的所有系统资源. void flush() :刷新此输出流并强制写出所有缓冲的输出字节. void write(by ...
- 【HDU - 1043】Eight(反向bfs+康托展开)
Eight Descriptions: 简单介绍一下八数码问题:在一个3×3的九宫格上,填有1~8八个数字,空余一个位置,例如下图: 1 2 3 4 5 6 7 8 在上图中,由于右下角位置是空的 ...
- wordpress备份和还原和迁移
备份用mysqldump -u root -p test person > backup.sql 还原用mysql -u root -p < ./backup.sql 数据库密码修改后怎么 ...
- UVA514 铁轨 Rails:题解
题目链接:https://www.luogu.org/problemnew/show/UVA514 分析: 入站序列是1-n,入站后判断如果等于出站序列的当前值,则直接出站.否则就在栈里待着不动.模拟 ...
- 【CodeForces - 1167C 】News Distribution(并查集)
News Distribution 题意 大概就是分成几个小团体,给每个人用1 - n编号,当对某个人传播消息的时候,整个小团体就知道这个消息,输出 分别对1 - n编号的某个人传递消息时,有多少人知 ...
- HelloDjango 启动!免费带你学Django全栈!
欢迎 追梦 入伙 HelloGitHub-Team,同时为我们带来了完全免费的 HelloDjango 系列教程,全网首发于 HelloGitHub 公众号.让想你的系列文章被跟多人看到,那就来加入我 ...
- 十三、asp.net中Repeater控件用法笔记
大家可能都对datagrid比较熟悉,但是如果在数据量大的时候,我们就得考虑使用 repeater作为我们的数据绑定控件了.Repeater控件与DataGrid (以及DataList)控件的主要区 ...
- js函数柯理化
所谓的函数柯理化,简单来说就是,一个需要接收多个参数的函数,进行分开一个个的传递参数,当函数执行的时候,传递剩余的参数. 主要作用在于增强函数的通用性. 如下举个例子: function custom ...
- tomcat 启动是 jdbc警告
the web application [ROOT] registered the JDBC driver [com.mysql.jdbc.Driver] but failed to unregist ...
- angularjs的input防抖
在开发中,遇到一个这样的需求,使用$scope.$watch()方法监听input值的改变,然后去$resource请求,但是请求过于频繁,需要做逻辑调整.代码如下: var timeout; $sc ...