求关于x的同余方程 ax≡1(mod b) 的最小正整数解。

对于 100%的数据,2≤a,b≤2*109

NOIP 2012 提高组 第二天 第一题

(只看Exgcd的自行跳过这段文字)
先撇开扩展欧几里得什么的不管,首先证明辗转相除法。
gcd(greatest common divisor),是一种计算两个数最大公约数的算法,时间复杂度为O(1)。简单来说,我们定义gcd(a,b)为a、b的最大公约数,那么gcd(a,b)=gcd(b,a mod b)。一般使用递归计算,在最后一层,a≡0(mod b)的时候,这一层的b即为答案。
下面给出证明:
令a>b,则存在正整数k、r,使得a=kb+r,而r≡a(mod b),所以我们要证明的结论就是gcd(a,b)=gcd(b,r)。
若r=0,那么以上结论显然。
那么,若r≠0呢?
假设gcd(a,b)=d,那么存在正整数p、q,使得a=pd,b=qd(p>q)。
所以pd=kqd+r,整理得r=(p-kq)d。因为r>0,所以pd>kqd,显然p-kq为正整数,所以r必为d的倍数,不难证明gcd(a,b)=gcd(b,r),也就是gcd(a,b)=gcd(b,a mod b)。
 #include<bits/stdc++.h>
#define LL long long
using namespace std; LL a,b;//不开long long见祖宗 LL gcd(LL a,LL b)
{
if(b==) return a;
return gcd(b,a%b);
}
int main(){
scanf("%d%d",&a,&b);
printf("%lld",gcd(a,b));
return ;
}
踏入正题~
问题是求解同余方程 ax≡1(mod b) 的最小正整数解。
将问题转化一下,这个方程的实质是ax+by=1(其中y为整数)。
扩欧求的是ax+by=gcd(a,b)的解。
那显然,这里的gcd(a,b)=1,所以这里a,b互质。
 
扩展欧几里得算法~前置知识:辗转相除法。
对于ax+by=gcd,输入中已经给了a、b我们只要求出一组x,y解,满足x是无数组解中最小的正整数。
假设我们求出了另一组数x2、y2,使得bx2+(a mod b)y2=gcd(b,a mod b),则因为gcd(a,b)=gcd(b,a mod b),所以bx2+(a mod b)y2=gcd(a,b);
联立等式,得到ax+by=bx2+(a mod b)y2
我们可以将a mod b转化成a-(a/b)*b。
所以ax+by=bx2+(a-(a/b)*b)y2
ax+by=ay2-b(x2-(a/b)y2)
解得x=y2,y=x2​−(a/b)y2。
对于等式bx2+(a mod b)y2=gcd(b,a mod b),我们再观察等式ax+by=gcd(a,b)。发现两个等式本质上是相同的,可得依次推出x3,y3,x4,y4……
直到最后一组b=0时,解得x=1,y=任意整数,当然,y最好取0,有可能会数值越界。
另外,x还要进行最后的处理,x=(x%b+b)%b就做到了x为最小正整数解,想想为什么?
 #include<bits/stdc++.h>
#define int long long
using namespace std; int a,b,x,y; void Exgcd(int a,int b)
{
if(b==)
{
x=,y=;//最终的x、y
return;
}
Exgcd(b,a%b);
int tmp=x;
x=y;//更新上一层x
y=tmp-(a/b)*y;//更新上一层y
}
signed main()//main函数不能为long long
{
scanf("%lld%lld",&a,&b);
Exgcd(a,b);
x=(x%b+b)%b;//最小正整数解
cout<<x<<endl;
return ;
}

数学题多手算模拟几遍就理解了~

gcd 和 同余方程(Exgcd)的更多相关文章

  1. NOIP2012同余方程[exgcd]

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...

  2. 洛谷 P1082 同余方程 —— exgcd

    题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...

  3. 洛谷 1082 同余方程——exgcd(水题)

    题目:https://www.luogu.org/problemnew/show/P1082 大水题. #include<iostream> #include<cstdio> ...

  4. 扩展gcd codevs 1200 同余方程

    codevs 1200 同余方程 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 求关 ...

  5. 一本通1632【 例 2】[NOIP2012]同余方程

    1632:[ 例 2][NOIP2012]同余方程 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 求关于 x 的同余方程 ax≡1(mod b) 的最小正整 ...

  6. 模板—扩展GCD*2

    有必要重新学一下扩展GCD emmmm. 主要是扩展GCD求解线性同余方程$ax≡b (mod p)$. 1.方程有解的充分必要条件:b%gcd(a,p)=0. 证明: $ax-py=b$ 由于求解整 ...

  7. 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)

    礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...

  8. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  9. [luoguP1082] 同余方程(扩展欧几里得)

    传送门 ax≡1(mod b) 这个式子就是 a * x % b == 1 % b 相当于 a * x - b * y == 1 只有当 gcd(a,b) == 1 时才有解,也就是说 ax + by ...

随机推荐

  1. restapi(1)- 文件上传下载服务

    上次对restapi开了个头,设计了一个包括了身份验证和使用权限的restful服务开发框架.这是一个通用框架,开发人员只要直接往里面加新功能就行了.虽然这次的restapi是围绕着数据库表的CRUD ...

  2. linux 安装weblogic12.1.3.0步骤

    此过程为jar包安装~ 需注意:fmw_12.1.3.0.0_wls.jar     需要jdk1.7.0_15以上的版本 1.安装JDK(若已装可跳过) (1)Oracle官网下载jdk linux ...

  3. TF项目实战(SSD目标检测)-VOC2007

    TF项目实战(SSD目标检测)-VOC2007 训练好的模型和代码会公布在网上: 步骤: 1.代码地址:https://github.com/balancap/SSD-Tensorflow 2.解压s ...

  4. Unity游戏神经网络版坦克大战

    基于遗传算法优化的神经网络来训练坦克AI是什么体验呢?下面有bulid好的demo. 包括window和安卓两个版本. 这是一个Unity项目. 下载链接:https://pan.baidu.com/ ...

  5. 【CYH-01】小奔的国庆练习赛:赛后标程

    前排鸣谢@找寻 大佬 emm-由于头一次举办公开赛所以--准备不是很充分,所以说题解也没有备好,在这里表示歉意. 欢迎大家来发布题解,在此我们可以提供AC代码,供大家参考. T1 解析:这一题可能栈溢 ...

  6. 字符串的排列(剑指offer)

    题目描述: 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 思路: 利用 ...

  7. RecyclerView下拉加载集合越界问题

    问题描述 在做毕业设计app中遇到这样一个问题,使用RecyclerView进行下拉加载数据的时候,比如我每次让它加载5条数据,当服务器端数据总数刚好是5的倍数的时候,不会出现下拉加载数据集合越界的问 ...

  8. 第一个C# Winform实例

    前面我们准备好了相关的库,现在开始搭建环境,本人自动化行业,就用Windorm开发吧,例子仅仅做引导,希望大家能深入.VS版本VS2017 1:打开VS建立一个WInform 项目.拉入两个控件,gr ...

  9. 在 Windows 上搭建 PHP 网站

    PHP(全称:PHP:Hypertext Preprocessor,即“PHP:超文本预处理器”)是一种开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入HTML中使用.PHP的语法借鉴吸收C语言. ...

  10. 机器学习经典分类算法 —— k-均值算法(附python实现代码及数据集)

    目录 工作原理 python实现 算法实战 对mnist数据集进行聚类 小结 附录 工作原理 聚类是一种无监督的学习,它将相似的对象归到同一个簇中.类似于全自动分类(自动的意思是连类别都是自动构建的) ...