Knative 实战:基于 Knative Serverless 技术实现天气服务-上篇
提到天气预报服务,我们第一反应是很简单的一个服务啊,目前网上有大把的天气预报 API 可以直接使用,有必要去使用 Knative 搞一套吗?杀鸡用牛刀?先不要着急,我们先看一下实际的几个场景需求:
- 场景需求 1:根据当地历年的天气信息,预测明年大致的高温到来的时间
- 场景需求 2:近来天气多变,如果明天下雨,能否在早上上班前,给我一个带伞提醒通知
- 场景需求 3:领导发话“最近经济不景气,公司财务紧张,那个服务器,你们提供天气、路况等服务的那几个小程序一起用吧,但要保证正常提供服务”。
从上面的需求,我们其实发现,要做好一个天气预报的服务,也面临内忧(资源紧缺)外患(需求增加),并不是那么简单的。不过现在更不要着急,我们可以使用 Knative 帮你解决上面的问题。
关键词:天气查询、表格存储,通道服务,事件通知
场景需求
首先我们来描述一下我们要做的天气服务场景需求:
1. 提供对外的天气预报 RESTful API
- 根据城市、日期查询(支持未来 3 天)国内城市天气信息
- 不限制查询次数,支持较大并发查询(1000)
2. 天气提醒
- 订阅国内城市天气信息,根据实际订阅城市区域,提醒明天下雨带伞
- 使用钉钉进行通知
整体架构
有了需求,那我们就开始如何基于 Knative 实现天气服务。我们先看一下整体架构:
- 通过 CronJob 事件源,每隔 3 个小时定时发送定时事件,将国内城市未来 3 天的天气信息,存储更新到表格存储
- 提供 RESTful API 查询天气信息
- 通过表格存储提供的通道服务,实现 TableStore 事件源
- 通过 Borker/Trigger 事件驱动模型,订阅目标城市天气信息
- 根据订阅收到的天气信息进行钉钉消息通知。如明天下雨,提示带伞等
基于内容较多,我们分上、下两篇分别进行介绍:
- 上篇我们会主要介绍如何对接第三方的天气预报 API、定时同步并更新天气信息以及提供 RESTful API;
- 下篇我们会主要介绍如何实现 TableStore 事件源、订阅天气信息并通过钉钉发送提醒通知;
基于 Knative 实现天气服务-上篇
对接高德开放平台天气预报 API
查询天气的 API 有很多,这里我们选择高德开放平台提供的天气查询 API,使用简单、服务稳定,并且该天气预报 API 每天提供 100000 免费的调用量,支持国内 3500 多个区域的天气信息查询。另外高德开放平台,除了天气预报,还可以提供 IP 定位、搜索服务、路径规划等,感兴趣的也可以研究一下玩法。
登录高德开放平台: https://lbs.amap.com, 创建应用,获取 Key 即可:
获取Key之后,可以直接通过 url 访问:https://restapi.amap.com/v3/weather/weatherInfo?city=110101&extensions=all&key=<用户 key>,返回天气信息数据如下:
{
"status":"1",
"count":"1",
"info":"OK",
"infocode":"10000",
"forecasts":[
{
"city":"杭州市",
"adcode":"330100",
"province":"浙江",
"reporttime":"2019-09-24 20:49:27",
"casts":[
{
"date":"2019-09-24",
"week":"2",
"dayweather":"晴",
"nightweather":"多云",
"daytemp":"29",
"nighttemp":"17",
"daywind":"无风向",
"nightwind":"无风向",
"daypower":"≤3",
"nightpower":"≤3"
},
...
]
}
]
}
定时同步并更新天气信息
同步并更新天气信息
该功能主要实现对接高德开放平台天气预报 API, 获取天气预报信息,同时对接阿里云表格存储服务(TableStore),用于天气预报数据存储。具体操作如下:
- 接收 CloudEvent 定时事件
- 查询各个区域天气信息
- 将天气信息存储或者更新到表格存储
在 Knative 中,我们可以直接创建服务如下:
apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
name: weather-store
namespace: default
spec:
template:
metadata:
labels:
app: weather-store
annotations:
autoscaling.knative.dev/maxScale: "20"
autoscaling.knative.dev/target: "100"
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/knative-sample/weather-store:1.2
ports:
- name: http1
containerPort: 8080
env:
- name: OTS_TEST_ENDPOINT
value: http://xxx.cn-hangzhou.ots.aliyuncs.com
- name: TABLE_NAME
value: weather
- name: OTS_TEST_INSTANCENAME
value: ${xxx}
- name: OTS_TEST_KEYID
value: ${yyy}
- name: OTS_TEST_SECRET
value: ${Pxxx}
- name: WEATHER_API_KEY
value: xxx
关于服务具体实现参见 GitHub 源代码:https://github.com/knative-sample/weather-store
创建定时事件
这里或许有疑问:为什么不在服务中直接进行定时轮询,非要通过 Knative Eventing 搞一个定时事件触发执行调用?那我们要说明一下,Serverless 时代下就该这样玩-按需使用。千万不要在服务中按照传统的方式空跑这些定时任务,亲,这是在持续浪费计算资源。
言归正传,下面我们使用 Knative Eventing 自带的定时任务数据源(CronJobSource),触发定时同步事件。
创建 CronJobSource 资源,实现每 3 个小时定时触发同步天气服务(weather-store),WeatherCronJob.yaml 如下:
apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CronJobSource
metadata:
name: weather-cronjob
spec:
schedule: "0 */3 * * *"
data: '{"message": "sync"}'
sink:
apiVersion: serving.knative.dev/v1alpha1
kind: Service
name: weather-store
执行命令:
kubectl apply -f WeatherCronJob.yaml
现在我们登录阿里云表格存储服务,可以看到天气预报数据已经按照城市、日期的格式同步进来了。
提供天气预报查询 RESTful API
有了这些天气数据,可以随心所欲的提供属于我们自己的天气预报服务了(感觉像是承包了一块地,我们来当地主),这里没什么难点,从表格存储中查询对应的天气数据,按照返回的数据格式进行封装即可。
在 Knative 中,我们可以部署 RESTful API 服务如下:
apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
name: weather-service
namespace: default
spec:
template:
metadata:
labels:
app: weather-service
annotations:
autoscaling.knative.dev/maxScale: "20"
autoscaling.knative.dev/target: "100"
spec:
containers:
- image: registry.cn-hangzhou.aliyuncs.com/knative-sample/weather-service:1.1
ports:
- name: http1
containerPort: 8080
env:
- name: OTS_TEST_ENDPOINT
value: http://xxx.cn-hangzhou.ots.aliyuncs.com
- name: TABLE_NAME
value: weather
- name: OTS_TEST_INSTANCENAME
value: ${xxx}
- name: OTS_TEST_KEYID
value: ${yyy}
- name: OTS_TEST_SECRET
value: ${Pxxx}
具体实现源代码 GitHub 地址:https://github.com/knative-sample/weather-service
查询天气 RESTful API:
- 请求 URL
GET /api/weather/query
参数:
cityCode:城市区域代码。如北京市区域代码:110000
date:查询日期。如格式:2019-09-26
- 返回结果
{
"code":200,
"message":"",
"data":{
"adcode":"110000",
"city":"北京市",
"date":"2019-09-26",
"daypower":"≤3",
"daytemp":"30",
"dayweather":"晴",
"daywind":"东南",
"nightpower":"≤3",
"nighttemp":"15",
"nightweather":"晴",
"nightwind":"东南",
"province":"北京",
"reporttime":"2019-09-25 14:50:46",
"week":"4"
}
}
查询:杭州,2019-09-26 天气预报信息示例
另外城市区域代码表可以在上面提供的源代码 GitHub 中可以查看,也可以到高德开放平台中下载:https://lbs.amap.com/api/webservice/download
小结
通过上面的介绍,大家对如何通过 Knative 提供天气预报实现应该有了更多的体感,其实类似的场景我们有理由相信通过 Knative Serverless 可以帮你做到资源利用游刃有余。下一篇会继续我们要实现的内容:通过 Knative 事件驱动,订阅天气信息,钉钉推送通知提醒,欢迎持续关注。
欢迎加入 Knative 交流群
“ 阿里巴巴云原生微信公众号(ID:Alicloudnative)关注微服务、Serverless、容器、Service Mesh等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发者的技术公众号。”
Knative 实战:基于 Knative Serverless 技术实现天气服务-上篇的更多相关文章
- Knative 实战:基于 Knative Serverless 技术实现天气服务-下篇
上一期我们介绍了如何基于 Knative Serverless 技术实现天气服务-上篇,首先我们先来回顾一下上篇介绍的内容: 通过高德天气 API 接口,每隔 3 个小时定时发送定时事件,将国内城市未 ...
- Knative 实战:基于 Knative Serverless 技术实现天气服务
提到天气预报服务,我们第一反应是很简单的一个服务啊,目前网上有大把的天气预报 API 可以直接使用,有必要去使用 Knative 搞一套吗?杀鸡用牛刀?先不要着急,我们先看一下实际的几个场景需求: 场 ...
- 如何通过 Serverless 技术降低微服务应用资源成本?
前言 在大型分布式 IT 架构领域,微服务是一项必不可少的技术.从本质上来讲,微服务是一种架构风格,将一个大型的系统拆分为多个拥有独立生命周期的应用,应用之间采用轻量级的通信机制进行通信.这些应用都是 ...
- Knative 实战:三步走!基于 Knative Serverless 技术实现一个短网址服务
短网址顾名思义就是使用比较短的网址代替很长的网址.维基百科上面的解释是这样的: 短网址又称网址缩短.缩短网址.URL 缩短等,指的是一种互联网上的技术与服务,此服务可以提供一个非常短小的 URL 以代 ...
- 从零入门 Serverless | Knative 带来的极致 Serverless 体验
作者 | 冬岛 阿里巴巴高级技术专家 Serverless 公众号后台回复"knative",即可免费下载<Knative 云原生应用开发指南>电子书! 导读:Serv ...
- Knative 实战:一个微服务应用的部署
作者 | 元毅 阿里云智能事业群高级开发工程师 在 Istio 中提供了一个 Bookinfo 的示例,用于演示微服务之间的调用,那么如何在 Knative 中部署这个示例呢?本文将会给大家介绍一下在 ...
- 【ASP.NET实战教程】基于ASP.NET技术下多用户博客系统全程实战开发(NNblog)
岁末主推:牛牛老师主讲,多用户博客系统,基于ASP.NET技术,年后将带来移动业务平台项目项目目标: 打造个性品牌Blogo,定制多用户博客 为每一个博客用户提供个性化的 blogo解决方案,打造精品 ...
- Knative Serving 进阶: Knative Serving SDK 开发实践
作者 | 阿里云智能事业群技术专家 牛秋霖(冬岛) 导读:通过前面的一系列文章你已经知道如何基于 kubectl 来操作 Knative 的各种资源.但是如果想要在项目中集成 Knative 仅仅使用 ...
- 《Selenium2自动化测试实战--基于Python语言》 --即将面市
发展历程: <selenium_webdriver(python)第一版> 将本博客中的这个系列整理为pdf文档,免费. <selenium_webdriver(python)第 ...
随机推荐
- javaio字节流复制文件夹
public class Copy1 { public static void main(String[] args) throws IOException { File src=new File(& ...
- Go语言学习——如何实现一个过滤器
1.过滤器使用场景 做业务的时候我们经常要使用过滤器或者拦截器(听这口音就是从Java过来的).常见的场景如一个HTTP请求,需要经过鉴权过滤器.白名单校验过滤.参数验证过滤器等重重关卡最终拿到数据. ...
- CodeForces 909F
题意略. 思路: 第一问: 递归地来写,找对称,发现关于(1<<y) - 1和(1<<y)对称的数字做 & 结果为0. 第二问: 6,7特殊考虑.循环左移(1<& ...
- C++ socket bind()函数报错 不存在从 "std::_Binder<std::_Unforced, SOCKET &, sockaddr *&, size_t &>" 到 "int" 的适当转换函数
昨天还可以正常运行的程序,怎么今天改了程序的结构就报错了呢?我明明没有改动函数内部啊!!! 内心无数只“草泥马”在奔腾,这可咋办呢?于是乎,小寅开始求助于亲爱的度娘...... 由于小寅知识水平有限, ...
- Delphi - cxGrid添加Footer显示
cxGrid - 添加footer显示 1:添加Footer Items 单击cxGrid Customize... ,Summary,Add: 2:添加Footer items数据绑定 选中一条需要 ...
- 借助 RAM disk 技术,加快前端工程打包速度
背景以 Jenkins 服务器为例,在构建内部的这个项目时,CE 每部署一次服务,最快 6 分钟,最慢将近 13 分钟左右.遇到多个项目并发打包会因为资源占用等问题时间会延长,甚至出现过几次 20 分 ...
- POJ-1062 昂贵的聘礼 (最短路)
POJ-1062 昂贵的聘礼:http://poj.org/problem?id=1062 题意: 有一个人要到1号点花费最少的钱,他可以花费一号点对应的价格,也可以先买下其他一些点,使得费用降低. ...
- CodeForces 416 B Appleman and Tree DP
Appleman and Tree 题解: 定义dp[u][1] 为以u的子树范围内,u这个点已经和某个黑点相连的方案数. dp[u][0] 为在u的子树范围内, u这个点还未和某个黑点相连的方案数. ...
- 牛客小白月赛4 J 强迫症 思维
链接:https://www.nowcoder.com/acm/contest/134/J来源:牛客网 题目描述 铁子最近犯上了强迫症,他总是想要把一个序列里的元素变得两两不同,而他每次可以执行一个这 ...
- POJ 2230 Watchcow 欧拉图
Watchcow Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 8800 Accepted: 3832 Specia ...