题目链接:BZOJ - 1901

题目分析

树状数组套线段树或线段树套线段树都可以解决这道题。

第一层是区间,第二层是权值。

空间复杂度和时间复杂度均为 O(n log^2 n)。

线段树比树状数组麻烦好多...我容易写错= =

代码

树状数组套线段树

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring> using namespace std; const int MaxN = 10000 + 5, MN = 1000000015, MaxNode = 10000 * 30 * 15 + 15; int n, m, Index, Used_Index;
int A[MaxN], Root[MaxN], Son[MaxNode][2], T[MaxNode], U[MaxN], C[MaxN]; void Add(int &x, int s, int t, int Pos, int Num)
{
if (x == 0) x = ++Index;
T[x] += Num;
if (s == t) return;
int m = (s + t) >> 1;
if (Pos <= m) Add(Son[x][0], s, m, Pos, Num);
else Add(Son[x][1], m + 1, t, Pos, Num);
} void Change(int x, int Pos, int Num)
{
for (int i = x; i <= n; i += i & -i)
Add(Root[i], 0, MN, Pos, Num);
} int Get_Sum(int x)
{
int ret = 0;
for (int i = x; i; i -= i & -i)
ret += T[Son[U[i]][0]];
return ret;
} void Init_U(int x)
{
for (int i = x; i; i -= i & -i)
U[i] = Root[i];
} void Turn(int x, int f)
{
for (int i = x; i; i -= i & -i)
{
if (C[i] == Used_Index) break;
C[i] = Used_Index;
U[i] = Son[U[i]][f];
}
} int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
{
scanf("%d", &A[i]);
Change(i, A[i], 1);
}
char f;
int Pos, Num, L, R, k, Temp;
for (int i = 1; i <= m; ++i)
{
f = '-';
while (f < 'A' || f > 'Z') f = getchar();
if (f == 'C')
{
scanf("%d%d", &Pos, &Num);
Change(Pos, A[Pos], -1);
A[Pos] = Num;
Change(Pos, Num, 1);
}
else
{
scanf("%d%d%d", &L, &R, &k);
int l, r, mid;
l = 0; r = MN;
Init_U(L - 1);
Init_U(R);
Used_Index = 0;
while (l < r)
{
mid = (l + r) >> 1;
Temp = Get_Sum(R) - Get_Sum(L - 1);
++Used_Index;
if (Temp >= k)
{
r = mid;
Turn(L - 1, 0);
Turn(R, 0);
}
else
{
l = mid + 1;
k -= Temp;
Turn(L - 1, 1);
Turn(R, 1);
}
}
printf("%d\n", l);
}
}
return 0;
}

线段树套线段树

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const int MaxN = 10000 + 5, MN = 1000000000 + 15, MaxNode = 10000 * 30 * 15 + 15; int n, m, Index, Used_Index;
int A[MaxN], Root[MaxN * 4], T[MaxNode], Son[MaxNode][2], U[MaxN * 4], C[MaxN * 4]; void Add(int &x, int s, int t, int Pos, int Num)
{
if (x == 0) x = ++Index;
T[x] += Num;
if (s == t) return;
int m = (s + t) >> 1;
if (Pos <= m) Add(Son[x][0], s, m, Pos, Num);
else Add(Son[x][1], m + 1, t, Pos, Num);
} void Change(int x, int s, int t, int Pos, int Pos_2, int Num)
{
Add(Root[x], 0, MN, Pos_2, Num);
if (s == t) return;
int m = (s + t) >> 1;
if (Pos <= m) Change(x << 1, s, m, Pos, Pos_2, Num);
else Change(x << 1 | 1, m + 1, t, Pos, Pos_2, Num);
} void Init_U(int x, int s, int t, int Pos)
{
if (Pos >= t)
{
U[x] = Root[x];
return;
}
int m = (s + t) >> 1;
Init_U(x << 1, s, m, Pos);
if (Pos >= m + 1) Init_U(x << 1 | 1, m + 1, t, Pos);
} void Turn(int x, int s, int t, int Pos, int f)
{
if (Pos >= t)
{
if (C[x] == Used_Index) return;
C[x] = Used_Index;
U[x] = Son[U[x]][f];
return;
}
int m = (s + t) >> 1;
Turn(x << 1, s, m, Pos, f);
if (Pos >= m + 1) Turn(x << 1 | 1, m + 1, t, Pos, f);
} int Get_Sum(int x, int s, int t, int Pos)
{
if (Pos >= t) return T[Son[U[x]][0]];
int ret = 0, m = (s + t) >> 1;
ret += Get_Sum(x << 1, s, m, Pos);
if (Pos >= m + 1) ret += Get_Sum(x << 1 | 1, m + 1, t, Pos);
return ret;
} int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
{
scanf("%d", &A[i]);
Change(1, 0, n, i, A[i], 1);
}
char f;
int L, R, Pos, Num, k;
for (int i = 1; i <= m; ++i)
{
f = '-';
while (f < 'A' || f > 'Z') f = getchar();
if (f == 'C')
{
scanf("%d%d", &Pos, &Num);
Change(1, 0, n, Pos, A[Pos], -1);
A[Pos] = Num;
Change(1, 0, n, Pos, Num, 1);
}
else
{
scanf("%d%d%d", &L, &R, &k);
int l, r, mid, Temp;
Used_Index = 0;
Init_U(1, 0, n, L - 1);
Init_U(1, 0, n, R);
l = 0; r = MN;
while (l < r)
{
++Used_Index;
mid = (l + r) >> 1;
Temp = Get_Sum(1, 0, n, R) - Get_Sum(1, 0, n, L - 1);
if (Temp >= k)
{
r = mid;
Turn(1, 0, n, R, 0);
Turn(1, 0, n, L - 1, 0);
}
else
{
l = mid + 1;
Turn(1, 0, n, R, 1);
Turn(1, 0, n, L - 1, 1);
k -= Temp;
}
}
printf("%d\n", l);
}
}
return 0;
}

  

[BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】的更多相关文章

  1. bzoj 1901 Dynamic Rankings (树状数组套线段树)

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MB Description 给定一个含有n个数的序列a[1] ...

  2. BZOJ.1901.Dynamic Rankings(树状数组套主席树(动态主席树))

    题目链接 BZOJ 洛谷 区间第k小,我们可以想到主席树.然而这是静态的,怎么支持修改? 静态的主席树是利用前缀和+差分来求解的,那么对于每个位置上的每棵树看做一个点,拿树状数组更新. 还是树状数组的 ...

  3. BZOJ 1901 Dynamic Rankings (整体二分+树状数组)

    题目大意:略 洛谷传送门 这道题在洛谷上数据比较强 貌似这个题比较常见的写法是树状数组套主席树,动态修改 我写的是整体二分 一开始的序列全都视为插入 对于修改操作,把它拆分成插入和删除两个操作 像$C ...

  4. BZOJ.1901.Dynamic Rankings(线段树套平衡树 Splay)

    题目链接or Here 题意:n个数,有两个操作:1.修改某个数为v:2.询问一段区间第k小的数 如果没有修改,则可以用线段树,每个节点P[a,b]存储大小为b-a+1的数组,代表其中的数 同时,这个 ...

  5. BZOJ 1901 Dynamic Rankings 树董事长

    标题效果:间隔可以改变k少 我的两个天树牌主席... 隔断Count On A Tree 之后我一直认为,随着树的主席的变化是分域林木覆盖率可持久段树. .. 事实上,我是误导... 尼可持久化线段树 ...

  6. [BZOJ 1901] Dynamic Rankings

    Link: BZOJ 1901 传送门 Solution: 带修改主席树的模板题 对于静态区间第$k$大直接上主席树就行了 但加上修改后会发现修改时复杂度不满足要求了: 去掉/增加第$i$位上的值时要 ...

  7. BZOJ.1901.Dynamic Rankings(整体二分)

    题目链接 BZOJ 洛谷 (以下是口胡) 对于多组的询问.修改,我们可以发现: 假设有对p1,p2,p3...的询问,在这之前有对p0的修改(比如+1),且p0<=p1,p2,p3...,那么我 ...

  8. 【BZOJ 1901】Zju2112 Dynamic Rankings &&【COGS 257】动态排名系统 树状数组套线段树

    外面是树状数组,里面是动态开点线段树,对于查询我们先把有关点找出来,然后一起在线段树上行走,这样就是单个O(log2)的了 #include <cstdio> #include <v ...

  9. Bzoj 1901: Zju2112 Dynamic Rankings 主席树,可持久,树状数组,离散化

    1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 6321  Solved: 2628[Su ...

随机推荐

  1. [Node.js] Web Scraping with Pagination and Advanced Selectors

    When web scraping, you'll often want to get more than just one page of data. Xray supports paginatio ...

  2. JavaEE SSH框架整合(三) struts2 异常、http错误状态码处理

    struts2的action可能出现訪问不到,或action报异常等情况,所以须要作一些处理,给用户一个友好的印象. 1. 异常处理  result声明在action中 <action name ...

  3. 5 Common Interview Mistakes that Could Cost You Your Dream Job (and How to Avoid Them)--ref

    There have been many articles on our site on software testing interviews. That is because, we, as IT ...

  4. Java基础知识强化之IO流笔记23:计算机是如何识别把两个字节拼接为中文(附加)

    1. 计算机是如何识别什么时候该把两个字节转换为一个中文呢? 在计算机中中文的存储分两个字节: • 第一个字节肯定是负数. • 第二个字节常见的是负数,可能有正数.但是没影响. 2. 代码示例: pa ...

  5. WGS84经纬度坐标与web墨卡托之间的转换【转】

    第一种方法: //经纬度转Web墨卡托 dvec3 CMathEngine::lonLat2WebMercator(dvec3 lonLat) { dvec3 mercator; ; ); ; mer ...

  6. wsdl自动生成Java代码,根据wsdl生成Java代码

    wsdl自动生成Java代码,根据wsdl生成Java代码 >>>>>>>>>>>>>>>>>&g ...

  7. 手机端的表单验证和PC端的不同

    1.手机端:由于页面小的局限性,表单验证从上到下依次进行,如果上一个验证不通过,则给出错误提示,代码中return回去,不必进行下一个的校验: 2.PC端:页面范围大,一般是在表单的后面或者下面,提示 ...

  8. 样式 style="clear:both"

    <div style="clear:both"></div>clear:both该属性的值指出了不允许有浮动对象的边.通俗的讲:这段代码的做用是:清除同行元 ...

  9. Java文件操作二:File文件的方法

    一.文件的判断方法 判断方法 .boolean canExecute()判断文件是否可执行 .boolean canRead()判断文件是否可读 .boolean canWrite() 判断文件是否可 ...

  10. 一个简单的web服务器例子

    一个简单的web容器小例子,功能十分简单,只能访问静态资源,对于新手来说还是有一定的意义.主要分三个类 1.server类:主要功能开启socketServer,阻塞server,接收socket访问 ...