All submissions for this problem are available.

Read problems statements in Mandarin Chinese and Russian.

This problem's statement is really a short one.

You are given an integer S. Consider an infinite sequence S, 2S, 3S, ... . Find the first number in this sequence that can be represented as Q3, where Q is some positive integer number. As the sought number could be very large, please print modulo (109 + 7).

The number S will be given to you as a product of N positive integer numbers A1, A2, ..., AN, namely S = A1 * A2 * ... * AN

Input

The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.

The first line of each test case contains an integer N.

Then there is a line, containing N space separated integers, denoting the numbers A1, A2, ..., AN.

Output

For each test case, output a single line containing the first term of the sequence which is the perfect cube, modulo 109+7.

Constraints

  • 1T10
  • (Subtask 1): N = 1, 1S109 - 15 points.
  • (Subtask 2): N = 1, 1S1018 - 31 point.
  • (Subtask 3): 1N100, 1Ai1018 - 54 points.

Example

Input:
2
2
2 2
2
2 3
Output:
8
216

Explanation

Example case 1. First few numbers in the infinite sequence 4, 8, 12, 16, 20, , etc. In this sequence, 8 is the first number which is also a cube (as 23 = 8).

Example case 2. First few numbers in the infinite sequence 6, 12, 18, 24, , etc. In this sequence, 216 is the first number which is also a cube (as 63 = 216).

【分析】

挺模板的东西,就当复习一下了。

 /*
宋代李冠
《蝶恋花·春暮》
遥夜亭皋闲信步。
才过清明,渐觉伤春暮。
数点雨声风约住。朦胧淡月云来去。
桃杏依稀香暗渡。
谁在秋千,笑里轻轻语。
一寸相思千万绪。人间没个安排处。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#include <map>
#define LOCAL
const int MAXN = + ;
const long long MOD = ;
const double Pi = acos(-1.0);
long long G = ;//原根
const int MAXM = * + ;
using namespace std;
typedef long long ll;
ll read(){
ll flag = , x = ;
char ch;
ch = getchar();
while (ch < '' || ch > '') {if (ch == '-') flag = -; ch = getchar();}
while (ch >= '' && ch <= '') {x = x * + (ch - ''); ch = getchar();}
return x * flag;
}
map<ll, int>Num;//记录个数
ll data[MAXN];
ll n; ll mul(ll a, ll b, ll c){//又要用快速乘QAQ
if (b == ) return 0ll;
if (b == ) return a % c;
ll tmp = mul(a, b / , c);
if (b % == ) return (tmp + tmp) % c;
else return (((tmp + tmp) % c) + (a % c)) % c;
}
ll pow(ll a, ll b, ll c){
if (b == ) return 1ll;
if (b == ) return a % c;
ll tmp = pow(a, b / , c);
if (b % == ) return mul(tmp, tmp, c);
else return mul(mul(tmp, tmp, c), a, c);
}
bool Sec_check(ll a, ll b, ll c){
ll tmp = pow(a, b, c);
if (tmp != && tmp != (c - )) return ;
if (tmp == (c - ) || (b % != )) return ;
return Sec_check(a, b / , c);
}
//判断n是否是素数
bool miller_rabin(ll n){
int cnt = ;
while (cnt--){
ll a = (ll)rand() % (n - ) + ;
if (!Sec_check(a, n - , n)) return ;
}
return ;
}
ll gcd(ll a, ll b){return b == 0ll ? a : gcd(b, a % b);}
ll pollard_rho(ll a, ll c){
ll i = , k = ;
ll x, y, d;
x = (ll)((double)(rand() / RAND_MAX) * (a - ) + 0.5) + 1ll;
y = x;
while (){
i++;
x = (mul(x, x, a) % a + c) % a;
d = gcd(y - x + a, a);
if (d > && d < a) return d;
if (y == x) return a;//失败
if (i == k){
k <<= ;
y = x;
}
}
}
void find(ll a, ll c){
if (a == ) return;
if (miller_rabin(a)){
Num[a]++;
return;
}
ll p = a;
while (p >= a) pollard_rho(a, c--);
pollard_rho(p, c);
pollard_rho(a / p, c);
}
void init(){
Num.clear();
scanf("%d", &n);
for (int i = ; i <= n; i++) {
data[i] = read();
find(data[i], );
}
}
void work(){
ll Ans = ;
for (int i = ; i <= n; i++) Ans = (Ans * data[i]) % MOD;
for (map<ll, int>::iterator it = Num.begin(); it != Num.end(); it++){
it->second %= ;
if (it->second){
for (int i = it->second; i < ; i++) Ans = (Ans * ((it->first) % MOD)) % MOD;
}
}
printf("%lld\n", Ans);
} int main(){
int T; scanf("%d", &T);
while (T--){
init();
work();
}
return ;
}

【CODECHEF】【phollard rho + miller_rabin】The First Cube的更多相关文章

  1. 最短路(模板)【CodeChef CLIQUED,洛谷P3371】

    自TG滚粗后咕咕咕了这么久,最近重新开始学OI,也会慢慢开始更博了.... 最短路算法经典的就是SPFA(Bellman-Ford),Dijkstra,Floyd: 本期先讲两个经典的单源最短路算法: ...

  2. 【CodeChef】Querying on a Grid(分治,最短路)

    [CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...

  3. 【CodeChef】Palindromeness(回文树)

    [CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...

  4. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)

    [CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...

  6. 【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑

    http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

  7. 【OpenCV新手教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26977557 作者:毛星云(浅墨) ...

  8. 【Knockout.js 学习体验之旅】(3)模板绑定

    本文是[Knockout.js 学习体验之旅]系列文章的第3篇,所有demo均基于目前knockout.js的最新版本(3.4.0).小茄才识有限,文中若有不当之处,还望大家指出. 目录: [Knoc ...

  9. 【Knockout.js 学习体验之旅】(2)花式捆绑

    本文是[Knockout.js 学习体验之旅]系列文章的第2篇,所有demo均基于目前knockout.js的最新版本(3.4.0).小茄才识有限,文中若有不当之处,还望大家指出. 目录: [Knoc ...

随机推荐

  1. Codeforces Round #226 (Div. 2)B. Bear and Strings

    /* 题意就是要找到包含“bear”的子串,计算出个数,需要注意的地方就是不要计算重复. */ 1 #include <stdio.h> #include <string.h> ...

  2. 利用gdb 调试android jni c动态库

    http://blog.dornea.nu/2015/07/01/debugging-android-native-shared-libraries/ Since I haven't done thi ...

  3. javascript数组操作汇总

    javascript之数组操作 - 不悔的青春 - 博客园 1.数组的创建 var arrayObj = new Array(); //创建一个数组 var arrayObj = new Array( ...

  4. nyoj 915 +-字符串

    +-字符串 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 Shiva得到了两个只有加号和减号的字符串,字串长度相同.Shiva一次可以把一个加号和它相邻的减号交换. ...

  5. fckeditor的用法

    1.下载解压文件 2.将解压后的文件放入webroot下 3.将js引入要使用fckeditor的页面 4.用ckeditor替换textarea <@e.textarea id="t ...

  6. solr 搜索引擎

    http://www.cnblogs.com/wenxinghaha/p/4088790.html

  7. SQL Server数据库PIVOT函数的使用详解(一)

    http://database.51cto.com/art/201108/285250.htm SQL Server数据库中,PIVOT在帮助中这样描述滴:可以使用 PIVOT 和UNPIVOT 关系 ...

  8. 让delphi程序不受WINDOWS日期格式的影响

    http://www.cnblogs.com/hnxxcxg/archive/2013/01/30/2882672.html 如果WINDOWS系统的短日期格式为“yyyy/m/d”,执行下面的代码会 ...

  9. iOS开发中一些常用的方法

    1.压缩图片 #pragma mark 处理图片 - (void)useImage:(UIImage *)image { NSLog(@"with-----%f heught-----%f& ...

  10. 谋哥:App排行榜的秘密

    App在改变世界,改变人们的生活.       如今购物大家都用淘宝.京东,吃饭你会用饭否,看天气预报你用墨迹天气,看视频用优酷.K歌你用唱吧,聊天联系你用微信,看新闻你用今日头条等等.你的生活由你自 ...