Description

黑白棋(game
【问题描述】
小A和小B又想到了一个新的游戏。
这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。
最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同。
E
小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子。
每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。
小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢?

Input

共一行,三个数,n,k,d。

Output

 
输出小A胜利的方案总数。答案对1000000007取模。

Sample Input

10 4 2

Sample Output

182
【数据规模和约定】

对于100%的数据,有1<=d<=k<=n<=10000, k为偶数,k<=100。

HINT

Source

stage 2 day1

【分析】

很经典的题目,很不错。

我们将相邻的棋子看成一对,显然,在最后的情况下,每对棋子都是紧贴在一起的。

对于每对棋子,白棋在左边,黑棋在右边,那么白棋就只能往右边走,黑棋也只能往左边走,否则若白棋往左边,黑棋也可以往左边,情况不会有改变。

那么若将每对棋子之间的距离看成一堆石子的数量,就变成经典的nim游戏。

然后用nimk的理论做就行了。

DP有点难想...看代码就看得懂了

 /*
唐代白居易
《问刘十九》
绿蚁新醅酒,红泥小火炉。
晚来天欲雪,能饮一杯无。*/ #include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LOCAL
const int MAXL = ;
const long long MOD = ;
const int MAXK = + ;
const int MAXN = + ;
using namespace std;
typedef long long ll;
ll f[][MAXN * ];
ll c[MAXK][], n, K, d; ll C(ll a, ll b){
if (a == b) return 1ll;
//if (b > a - b) b = a - b;
return c[a][b] % MOD;
}
void prepare(){//预处理组合数
memset(c, , sizeof(c));
c[][] = ;
for (ll i = ; i <= 10005ll; i++){
c[i][] = 1ll;
//if (i <= 210) c[i][i] = 1;
for (ll j = ; j < min(i, 250ll); j++)
c[i][j] = (C(i - , j) + C(i - , j - )) % MOD;
}
//for (ll i = 1; i <= 50; i++)
//for (ll j = 0; j <= i; j++) printf("%d %d:%d\n", i, j, C[i][j]);
//printf("%d\n", C[10][2]);
}
void dp(){
K /= ;
memset(f, , sizeof(f));
f[][] = ;//第0位
for (ll i = ; i <= ; i++){
for (ll j = ; j <= n - * K; j++)//注意这一层不需要枚举到n了,因为只有这么多的空位
for (ll k = ; (k * (d + ) <= K) && (k * (d + ) * (1ll<<(i - )) <= j); k++){
f[i][j] = (f[i][j] + (f[i - ][j - k * (d + ) * (1ll<<(i - ))] * C(K, k * (d + ))) % MOD) % MOD; }
}
ll Ans = ;
for (ll i = ; i <= n - * K; i++) Ans = (Ans + (f[][i] * C(n - i - K * + K, K)) % MOD) % MOD;
printf("%lld\n", (C(n, * K) - Ans + MOD) % MOD);
} int main(){ prepare();
scanf("%lld%lld%lld", &n, &K, &d);
dp();
//n的距离,k个石头,1~d次移动
return ;
}

【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋的更多相关文章

  1. 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

    [BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...

  2. [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 626  Solved: 390[Submit][Status][ ...

  3. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  4. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

  5. BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)

    题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...

  6. [SDOI2011]黑白棋

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  7. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  8. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  9. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

随机推荐

  1. xrdp远程 & watchdog 启用与测试 & WebRTC

    sudo apt-get install xrdp sudo apt-get install vnc4server tightvncserver echo "xfce4-session&qu ...

  2. Codeforces 348A Mafia

    题目链接:http://codeforces.com/problemset/problem/348/A 题目大意:N个人中找出1个人主持,剩下N-1个人参与游戏,给出每个人想参与游戏的次数,问要满足每 ...

  3. Android NDK开发指南---Application.mk文件和android.mk文件

    https://android.googlesource.com/platform/development/+/donut-release/ndk/docs/OVERVIEW.TXT https:// ...

  4. Java 8:不要再用循环了

    本文由 ImportNew - 进林 翻译自 deadcoderising.欢迎加入翻译小组.转载请见文末要求. 正如我之前所写的,Java 8中的新功能特性改变了游戏规则.对Java开发者来说这是一 ...

  5. 面试题 php随机获取概率结果

    题目:随机输出“苹果”,“橘子”,“香蕉”要求输出“苹果”的概率为50%,“橘子”的概率为30%,“香蕉”的概率为20% 分析 方案一: 最常用rand(1,10)来处理 如果是5以下的输出苹果 6到 ...

  6. qt中使用opencv处理图片 QImage 和 IplImage 相互之间转换问题

    在用opencv处理图片显示在qt label上的时候遇到不是问题 1. qt上要用qimage形式才干显示 IplImage转成 Qimage 彩色图像转换 IplImage  *fram; QIm ...

  7. 算法----希尔排序(shell sort)

    在分析插入排序(插入排序算法实现)的算法性能的过程时知道.当数组规模较小或者存在较多的有序子序列时.插入排序将会在非常短的时间内完毕数组的排序,为此能够设计一个单调序列h[n],将数组分为多个小的序列 ...

  8. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  9. Spring DI模式 小样例

           今儿跟同事讨论起来spring早期的,通过大篇幅xml的配置演变到今天annotation的过程,然后随手写了个小样例,感觉还不错,贴到这里留个纪念. 样例就是用JAVA API的方式, ...

  10. MyBatis Tutorial – CRUD Operations and Mapping Relationships – Part 1---- reference

    http://www.javacodegeeks.com/2012/11/mybatis-tutorial-crud-operations-and-mapping-relationships-part ...