平衡树(AVL)详解
1. 为什么平衡树?
在二叉搜索树(BST,Binary Search Tree)中提到,BST树可能会退化成一个链表(整棵树中只有左子树,或者只有右子树),这将大大影响二叉树的性能。
前苏联科学家G.M. Adelson-Velskii 和 E.M. Landis给出了答案。他们在1962年发表的一篇名为《An algorithm for the organization of information》的文章中提出了一种自平衡二叉查找树(self-balancing binary search tree)。这种二叉查找树在插入和删除操作中,可以通过一系列的旋转操作来保持平衡,从而保证了二叉查找树的查找效率。最终这种二叉查找树以他们的名字命名为“AVL-Tree”,它也被称为平衡二叉树(Balanced Binary Tree)。
2. 原理
在节点上设置一个平衡因子BF,代表左右子树的高度差,BF = { -1, 0, 1}。
3. 旋转
AVL的Insert/Delete操作可能会引起树的失衡,可以通过选择解决这个问题。
3.1 4种旋转
(1)LL
(2)RR
(3)LR
(4)RL
在下面的文章中有一个关于AVL选择的动画,大家不妨看看。
C#与数据结构--树论--平衡二叉树(AVL Tree)
3.2 旋转实现
在算法导论中给出旋转的伪代码:
LEFT-ROTATE(T, x)
1 y ← right[x] ▹ Set y.
2 right[x] ← left[y] ▹ Turn y's left subtree into x's right subtree.
3 p[left[y]] ← x
4 p[y] ← p[x] ▹ Link x's parent to y.
5 if p[x] = nil[T]
6 then root[T] ← y
7 else if x = left[p[x]]
8 then left[p[x]] ← y
9 else right[p[x]] ← y
10 left[y] ← x ▹ Put x on y's left.
11 p[x] ← y
//旋转以root为根的子树,当高度改变,则返回true;高度未变则返回false
private bool RotateSubTree(int bf)
{
bool tallChange = true;
Node root = path[p], newRoot = null;
if (bf == 2) //当平衡因子为2时需要进行旋转操作
{
int leftBF = root.Left.BF;
if (leftBF == -1) //LR型旋转
{
newRoot = LR(root);
}
else if (leftBF == 1)
{
newRoot = LL(root); //LL型旋转
}
else //当旋转根左孩子的bf为0时,只有删除时才会出现
{
newRoot = LL(root);
tallChange = false;
}
}
if (bf == -2) //当平衡因子为-2时需要进行旋转操作
{
int rightBF = root.Right.BF; //获取旋转根右孩子的平衡因子
if (rightBF == 1)
{
newRoot = RL(root); //RL型旋转
}
else if (rightBF == -1)
{
newRoot = RR(root); //RR型旋转
}
else //当旋转根左孩子的bf为0时,只有删除时才会出现
{
newRoot = RR(root);
tallChange = false;
}
}
//更改新的子树根
if (p > 0)
{
if (root.Data < path[p - 1].Data)
{
path[p - 1].Left = newRoot;
}
else
{
path[p - 1].Right = newRoot;
}
}
else
{
_head = newRoot; //如果旋转根为AVL树的根,则指定新AVL树根结点
}
return tallChange;
}
//root为旋转根,rootPrev为旋转根双亲结点
private Node LL(Node root) //LL型旋转,返回旋转后的新子树根
{
Node rootNext = root.Left;
root.Left = rootNext.Right;
rootNext.Right = root;
if (rootNext.BF == 1)
{
root.BF = 0;
rootNext.BF = 0;
}
else //rootNext.BF==0的情况,删除时用
{
root.BF = 1;
rootNext.BF = -1;
}
return rootNext; //rootNext为新子树的根
}
private Node LR(Node root) //LR型旋转,返回旋转后的新子树根
{
Node rootNext = root.Left;
Node newRoot = rootNext.Right;
root.Left = newRoot.Right;
rootNext.Right = newRoot.Left;
newRoot.Left = rootNext;
newRoot.Right = root;
switch (newRoot.BF) //改变平衡因子
{
case 0:
root.BF = 0;
rootNext.BF = 0;
break;
case 1:
root.BF = -1;
rootNext.BF = 0;
break;
case -1:
root.BF = 0;
rootNext.BF = 1;
break;
}
newRoot.BF = 0;
return newRoot; //newRoot为新子树的根
}
private Node RR(Node root) //RR型旋转,返回旋转后的新子树根
{
Node rootNext = root.Right;
root.Right = rootNext.Left;
rootNext.Left = root;
if (rootNext.BF == -1)
{
root.BF = 0;
rootNext.BF = 0;
}
else //rootNext.BF==0的情况,删除时用
{
root.BF = -1;
rootNext.BF = 1;
}
return rootNext; //rootNext为新子树的根
}
private Node RL(Node root) //RL型旋转,返回旋转后的新子树根
{
Node rootNext = root.Right;
Node newRoot = rootNext.Left;
root.Right = newRoot.Left;
rootNext.Left = newRoot.Right;
newRoot.Right = rootNext;
newRoot.Left = root;
switch (newRoot.BF) //改变平衡因子
{
case 0:
root.BF = 0;
rootNext.BF = 0;
break;
case 1:
root.BF = 0;
rootNext.BF = -1;
break;
case -1:
root.BF = 1;
rootNext.BF = 0;
break;
}
newRoot.BF = 0;
return newRoot; //newRoot为新子树的根
}
4. 插入与删除
4.1 插入
public bool Add(int value) //添加一个元素
{ //如果是空树,则新结点成为二叉排序树的根
if (_head == null)
{
_head = new Node(value);
_head.BF = 0;
return true;
}
p = 0;
//prev为上一次访问的结点,current为当前访问结点
Node prev = null, current = _head;
while (current != null)
{
path[p++] = current; //将路径上的结点插入数组
//如果插入值已存在,则插入失败
if (current.Data == value)
{
return false;
}
prev = current;
//当插入值小于当前结点,则继续访问左子树,否则访问右子树
current = (value < prev.Data) ? prev.Left : prev.Right;
}
current = new Node(value); //创建新结点
current.BF = 0;
if (value < prev.Data) //如果插入值小于双亲结点的值
{
prev.Left = current; //成为左孩子
}
else //如果插入值大于双亲结点的值
{
prev.Right = current; //成为右孩子
}
path[p] = current; //将新元素插入数组path的最后
//修改插入点至根结点路径上各结点的平衡因子
int bf = 0;
while (p > 0)
{ //bf表示平衡因子的改变量,当新结点插入左子树,则平衡因子+1
//当新结点插入右子树,则平衡因子-1
bf = (value < path[p - 1].Data) ? 1 : -1;
path[--p].BF += bf; //改变当父结点的平衡因子
bf = path[p].BF; //获取当前结点的平衡因子
//判断当前结点平衡因子,如果为0表示该子树已平衡,不需再回溯
//而改变祖先结点平衡因子,此时添加成功,直接返回
if (bf == 0)
{
return true;
}
else if (bf == 2 || bf == -2) //需要旋转的情况
{
RotateSubTree(bf);
return true;
}
}
return true;
}
4.2 删除
private void RemoveNode(Node node)
{
Node tmp = null;
//当被删除结点存在左右子树时
if (node.Left != null && node.Right != null)
{
tmp = node.Left; //获取左子树
path[++p] = tmp;
while (tmp.Right != null) //获取node的中序遍历前驱结点,并存放于tmp中
{ //找到左子树中的最右下结点
tmp = tmp.Right;
path[++p] = tmp;
}
//用中序遍历前驱结点的值代替被删除结点的值
node.Data = tmp.Data;
if (path[p - 1] == node)
{
path[p - 1].Left = tmp.Left;
}
else
{
path[p - 1].Right = tmp.Left;
}
}
else //当只有左子树或右子树或为叶子结点时
{ //首先找到惟一的孩子结点
tmp = node.Left;
if (tmp == null) //如果只有右孩子或没孩子
{
tmp = node.Right;
}
if (p > 0)
{
if (path[p - 1].Left == node)
{ //如果被删结点是左孩子
path[p - 1].Left = tmp;
}
else
{ //如果被删结点是右孩子
path[p - 1].Right = tmp;
}
}
else //当删除的是根结点时
{
_head = tmp;
}
}
//删除完后进行旋转,现在p指向实际被删除的结点
int data = node.Data;
while (p > 0)
{ //bf表示平衡因子的改变量,当删除的是左子树中的结点时,平衡因子-1
//当删除的是右子树的孩子时,平衡因子+1
int bf = (data <= path[p - 1].Data) ? -1 : 1;
path[--p].BF += bf; //改变当父结点的平衡因子
bf = path[p].BF; //获取当前结点的平衡因子
if (bf != 0) //如果bf==0,表明高度降低,继续后上回溯
{
//如果bf为1或-1则说明高度未变,停止回溯,如果为2或-2,则进行旋转
//当旋转后高度不变,则停止回溯
if (bf == 1 || bf == -1 || !RotateSubTree(bf))
{
break;
}
}
}
}
平衡树(AVL)详解的更多相关文章
- 详解什么是平衡二叉树(AVL)(修订补充版)
详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- AVL树详解
AVL树 参考了:http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html 修改了其中的错误,代码实现并亲自验证过. 平衡二叉树(B ...
- AVL树平衡旋转详解
AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, ...
- Redis数据类型使用场景及有序集合SortedSet底层实现详解
Redis常用数据类型有字符串String.字典dict.列表List.集合Set.有序集合SortedSet,本文将简单介绍各数据类型及其使用场景,并重点剖析有序集合SortedSet的实现. Li ...
- Java集合详解6:TreeMap和红黑树
Java集合详解6:TreeMap和红黑树 初识TreeMap 之前的文章讲解了两种Map,分别是HashMap与LinkedHashMap,它们保证了以O(1)的时间复杂度进行增.删.改.查,从存储 ...
- 探索Redis设计与实现6:Redis内部数据结构详解——skiplist
本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...
- 【转】Redis内部数据结构详解 -- skiplist
本文是<Redis内部数据结构详解>系列的第六篇.在本文中,我们围绕一个Redis的内部数据结构--skiplist展开讨论. Redis里面使用skiplist是为了实现sorted s ...
- 丰富图文详解B-树原理,从此面试再也不慌
本文始发于个人公众号:TechFlow,原创不易,求个关注 本篇原计划在上周五发布,由于太过硬核所以才拖到了这周五.我相信大家应该能从标题当中体会到这个硬核. 周五的专题是大数据和分布式,我最初的打算 ...
- 数据结构图文解析之:队列详解与C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
随机推荐
- 解决每次升级Xcode后三方插件失效问题
其实就是插件里面的UIID没有加新XcodedeUIID 拿常用的Alactraz来说 在Terminal中 un these 2 lines in terminal:1:find ~/Library ...
- 文字排版--字号、颜色(font-size, color)
可以使用下面代码设置网页中文字的字号为12像素,并把字体颜色设置为#666(灰色): body{font-size:12px;color:#666} 示例: <!DOCTYPE HTML> ...
- Linux下JDK环境变量配置
JDK官方下载地址: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 我的下载路 ...
- Spring(一)简述(转载)
原文出自:http://www.cnblogs.com/liunanjava/p/4396794.html 一.Spring简述 Spring是一个开源框架,Spring是于2003 年兴起的一个轻量 ...
- 18 4Sum(寻找四个数之和为指定数的集合Medium)
题目意思:给一个乱序数组,在里面寻找三个数之和为target的所有情况,这些情况不能重复,增序排列 思路:采用3Sum的做法 ps:有见一种用hash的,存任意两个元素的和,然后变成3sum问题,需要 ...
- 支付宝支付错误 系统忙:错误代码AE150002999
今天出现支付宝支付错误,支付系统繁忙请稍等,错误码AE150002999.测试了其他连个收款方,可跳转到正常扫码支付页面,排除了代码错误. 在登录支付宝商家中,也签约了“即时到帐”功能.度娘和查看都找 ...
- jQuery运维开发之第十七天
JQuery 学习参考网址http://jquery.cuishifeng.cn/ python中叫模块,在DOM/BOM/Javascript中叫类库 现在的JQ版本有:1.x 2.x 3.x 建议 ...
- 利用TraceSource写日志
利用TraceSource写日志 从微软推出第一个版本的.NET Framework的时候,就在“System.Diagnostics”命名空间中提供了Debug和Trace两个类帮助我们完成针对调试 ...
- GNU PGM
Linux程序设计入门 - gpm gpm是Linux console下的滑鼠驱动程序,它主要提供文字模式下的滑鼠事件处 理.Linux下文字界面的滑鼠几乎都是用gpm来处理. gpm的文件在gpm原 ...
- Java this 心得
用类名定义一个变量的时候,定义的应该只是一个引用,外面可以通过这个引用来访问这个类里面的属性和方法,那们类里面是否也应该有一个引用来访问自己的属性和方法纳?呵呵,JAVA提供了一个很好的东西,就是 t ...