SRM 500(2-1000pt)
DIV2 1000pt
题意:给定两个集合A和B,A = {b1*q1i | 0 <= i <= n1-1},B = {b2*q2i | 0 <= i <= n2-1},问将AB两个集合合并之后的集合中元素的个数。(注意,每个集合中每个元素只能有一个)。其中0 <= b1,b2,q1,q2 <= 5*10^8,1 <= n1,n2 <= 10^5。
解法:首先,我们称b = 0或者q = 0或者q = 1的集合为特殊集合,因为特殊集合中最多有两个元素。若至少有一个集合为特殊集合,则此问题容易解决。下面考虑两个集合都不为特殊集合的情况。
其实,如果不是A和B中的数太大,我们可以将他们每个都求出来,然后放到一个set<long long>里面,返回set.size()即可,时间复杂度O(n1 + n2)。我们需要找到一种表示这些大数的方法。考虑整数的唯一分解式。
每个整数可以表示成(a1^p1) * (a2^p2) * (a3^p3) *..* (ak^pk)的形式,也就是说,我们只需要统一所有会用到的质数,然后把p1,p2..pk放到一个vector里面,就可以表示每个整数。然后用一个set<vector<long long> >即可统计元素的个数。
tag: math, set
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "GeometricProgressions.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ;
const int N = ;
const int M = ; int an[][N];
int tmp_sz;
int64 bn[][N]; int inte_dev(int x, int* an, int64* bn)
{
int all = -;
for (int i = ; i*i <= x;){
if (!(x%i)){
an[++all] = i;
bn[all] = ;
}
while (!(x%i)){
++ bn[all];
x /= i;
}
if (i == ) ++ i;
else i += ;
}
++ all;
if (x != ){
an[all] = x;
bn[all++] = ;
}
return all;
} int gao(int64 x, int a)
{
int ret = ;
while (!(x % a)){
x /= a;
++ ret;
}
return ret;
} VI vadd(VI a, VI b)
{
VI ret; ret.clear();
for (int i = ; i < tmp_sz; ++ i)
ret.PB (a[i]+b[i]);
return ret;
} class GeometricProgressions
{
public:
int count(int aa, int b, int n, int c, int d, int m){
int64 a[];
a[] = aa; a[] = b; a[] = c; a[] = d;
if (!a[] || !a[] || a[] == ){
swap (a[], a[]); swap (a[], a[]); swap (n, m);
}
if (!a[] || !a[] || a[] == ){
set<int64> tmp;
tmp.insert(a[]);
if (n > ) tmp.insert(a[]*a[]); int cnt = , sz_tmp = tmp.size();
int64 now = a[];
for (int i = ; i < m; ++ i){
if (tmp.count(now)) ++ cnt;
else tmp.insert(now);
now *= a[];
if (now > 25e16)
return m + sz_tmp - cnt;
}
return tmp.size();
} int64 all[];
for (int i = ; i < ; ++ i)
all[i] = inte_dev(a[i], an[i], bn[i]); set<int> tmp;
VI tt; tt.clear();
for (int i = ; i < ; ++ i)
for (int j = ; j < all[i]; ++ j)
if (!tmp.count(an[i][j])){
tmp.insert (an[i][j]);
tt.PB (an[i][j]);
} vector<int> v[];
for (int i = ; i < ; ++ i)
v[i].clear();
tmp_sz = tmp.size();
for (int i = ; i < ; ++ i)
for (int j = ; j < tmp_sz; ++ j)
v[i].PB (gao(a[i], tt[j])); set<VI > ans;
ans.erase(ans.begin(), ans.end());
VI now = v[];
for (int i = ; i < n; ++ i){
if (!ans.count(now)) ans.insert(now);
now = vadd(now, v[]);
}
now = v[];
for (int i = ; i < m; ++ i){
if (!ans.count(now)) ans.insert(now);
now = vadd(now, v[]);
}
return ans.size();
} // BEGIN CUT HERE
public:
//void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); if ((Case == -1) || (Case == 3)) test_case_3(); }
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0();}
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_1() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_2() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); }
void test_case_3() { int Arg0 = ; int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; int Arg5 = ; int Arg6 = ; verify_case(, Arg6, count(Arg0, Arg1, Arg2, Arg3, Arg4, Arg5)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
GeometricProgressions ___test;
___test.run_test(-);
return ;
}
// END CUT HERE
SRM 500(2-1000pt)的更多相关文章
- topcoder srm 500 div1
problem1 link 如果decisions的大小为0,那么每一轮都是$N$个人.答案为0. 否则,如果答案不为0,那么概率最大的一定是一开始票数最多的人.因为这个人每一轮都在可以留下来的人群中 ...
- TC250专场
SRM 623 DIV2 1000pt 题意:给出一个最多50*50的矩阵,每个单元可能为'.'.'P'.'A','.'代表空地,你每次操作可以把一个P或者A拿到空地上,求一个最大的含有相同字符的矩形 ...
- SRM149 - SRM150(少SRM150-DIV1-LV3)
SRM 149 DIV2 1000pt 题意: 对于n个人,第i人有pi的钱.将他们分成不超过四个组,每组统一交费x,对每个人,若他拥有的钱超过x则交费,否则不交费.问最多能使这些人交多少钱. 1&l ...
- Topcoder 好题推荐
SRM SRM147 DIV1 1000pt DP SRM148 DIV1 1100pt 递归 SRM149 DIV1 1000pt math SRM150 DIV1 500pt DP SRM469 ...
- SRM 618 DIV1 500
非常棒的组合问题,看了好一会,无想法.... 有很多做法,我发现不考虑顺序的最好理解,也最好写. 结果一定是两种形式 A....A dp[n-1] A...A...A sgma(dp[j]*dp[ ...
- SRM 615 DIV1 500
TC 都615了...时间过的真快啊. 第一次做出500分,心情还是很激动的,虽然看了很久的题解,TC官网上的题解,很详细,但是英语的...我搜了搜,发现一份日语的...好吧,我还是看看英语的吧... ...
- topcoder srm 628 div2 250 500
做了一道题,对了,但是还是掉分了. 第二道题也做了,但是没有交上,不知道对错. 后来交上以后发现少判断了一个条件,改过之后就对了. 第一道题爆搜的,有点麻烦了,其实几行代码就行. 250贴代码: #i ...
- SRM 719 Div 1 250 500
250: 题目大意: 在一个N行无限大的网格图里,每经过一个格子都要付出一定的代价.同一行的每个格子代价相同. 给出起点和终点,求从起点到终点的付出的最少代价. 思路: 最优方案肯定是从起点沿竖直方向 ...
- TopCoder SRM 639 Div.2 500 AliceGameEasy
题意: 一个游戏有n轮,有A和B比赛,谁在第 i 轮得胜,就获得 i 分,给出x,y,问A得x分,B得y分有没有可能,如果有,输出A最少赢的盘数 解题思路: 首先判断n(n+1)/2 = (x+y)是 ...
随机推荐
- jQuery实现页面滚动时顶部动态显示隐藏
http://www.jqcool.net/jquery-scroll.html 另外headroom.js也行:http://www.bootcss.com/p/headroom.js/
- WinForm中的事件触发机制学习
在一个Form窗体中拖个按钮,双击后系统自动生成代码: private void button1_Click(object sender, EventArgs e) { } 同时在窗体的Initial ...
- OSX安装nginx和rtmp模块(rtmp直播服务器搭建)
1.安装Homebrew,执行命令 1 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/ma ...
- Elasticsearch学习1--head插件安装
1.简要介绍 elasticsearch-head是一个elasticsearch的集群管理工具,它是完全由html5编写的独立网页程序. 2.最近尝试学习elasticsearch,查了一些资料,但 ...
- java——输入流FileInputStream
写一个简单的程序,实现从电脑中的一个盘里的文件中往程序中输入内容. package com.liaojianya.chapter5; import java.io.FileInputStream; i ...
- iOS把两张图片合成一张图片
0x00 步骤 先读取两张图片把创建出CGImageRef 创建上下文画布 把图片依次画在画布指定位置上 从上下文中获得合并后的图片 关闭上下文 释放内存 0x01 代码实现 - (void)comp ...
- 《uname命令》-linux命令五分钟系列之五
本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc 希望您能通过捐款的方式支持Linux大棚博客的运行和发展.请见“关于捐款” == ...
- php 文件上传后缀名与文件类型对照表(几乎涵盖所有文件)
网上有很多php文件上传的类,文件上传处理是php的一个特色(至少手册上是将此作为php特点来展示的,个人认为php在数组方面的优异功能更有特 色),学php的人都知道文件上传怎么做,但很多人在编程中 ...
- python 装饰器、生成器、迭代器
# 装饰器'''由高阶函数(把一个函数名当作实参传递给另一个函数,返回值中包含函数名)和嵌套函数(函数中嵌套函数)组成功能:在不更改原函数的代码和调用方式的前提下添加新的功能装饰器本身就是一个函数.使 ...
- bzoj1855: [Scoi2010]股票交易
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...