Sum of divisors

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2063    Accepted Submission(s): 718

Problem Description
mmm is learning division, she's so proud of herself that she can figure out the sum of all the divisors of numbers no larger than 100 within one day!

But her teacher said "What if I ask you to give not only the sum but the square-sums of all the divisors of numbers within hexadecimal number 100?" mmm get stuck and she's asking for your help.

Attention, because mmm has misunderstood teacher's words, you have to solve a problem that is a little bit different.

Here's the problem, given n, you are to calculate the square sums of the digits of all the divisors of n, under the base m.

 
Input
Multiple test cases, each test cases is one line with two integers.

n and m.(n, m would be given in 10-based)

1≤n≤10
9

2≤m≤16

There are less then 10 test cases.

 
Output
Output the answer base m.
 
Sample Input
10 2
30 5
 
Sample Output
110
112

Hint

Use A, B, C...... for 10, 11, 12......
Test case 1: divisors are 1, 2, 5, 10 which means 1, 10, 101, 1010 under base 2, the square sum of digits is
1^2+ (1^2 + 0^2) + (1^2 + 0^2 + 1^2) + .... = 6 = 110 under base 2.

 
Source
 
现在看觉得挺简单的,第一眼看时觉得挺难就没做,谁知道人家一下就AC了,直接一般的方法做加一点优化就行了
#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
int vet[10000];
int main()
{
int n,m,all,sum,s,ii,i,t;
char str[17]={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E'};
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==1)
{
printf("1\n");
continue;
}
all=n;sum=0;
for(i=2;i<all;i++)
{
if(n%i==0)
{
all=n/i;//注意这一步优化,最关键的一步,如果i是n的因数,那么我们直接把i和n/i一起算了,i的上界变成了n/i-1
// printf("%d %d",i,n/i);
s=0;
ii=i;
while(ii)
{
t=ii%m;
s+=t*t;
ii=ii/m;
}
ii=n/i;
while(ii)
{
t=ii%m;
s+=t*t;
ii=ii/m;
}
sum+=s;
}
}
s=0;
ii=n;
while(ii)
{
t=ii%m;
s+=t*t;
ii=ii/m;
}
sum+=s;
sum++;
t=0;
while(sum)
{
vet[t++]=sum%m;
sum=sum/m;
}
for(i=t-1;i>=0;i--)
{
printf("%c",str[vet[i]]);
} printf("\n"); }
return 0;
}

hdu4432 Sum of divisors(数论)的更多相关文章

  1. HDU4432 Sum of Divisors

    涉及知识点: 1. 进制转换. 2. 找因子时注意可以降低复杂度. Sum of divisors Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  2. Sum of divisors

    Problem Description mmm is learning division, she's so proud of herself that she can figure out the ...

  3. Project Euler 501 Eight Divisors (数论)

    题目链接: https://projecteuler.net/problem=501 题意: \(f(n)\) be the count of numbers not exceeding \(n\) ...

  4. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  5. zoj 2286 Sum of Divisors

    // f(n)表示 n的约数和 不包括自己// 给你一个m 求1 到 100万里面 f(n)<=m 的个数// 那么首先要用筛选求出所有出 f(n)// 然后就好办了 // 写好后 看见别人好快 ...

  6. hdu 4432 Sum of divisors(十进制转其他进制)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4432 代码: #include<cstdio> #include<cstring&g ...

  7. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  8. GCD SUM 强大的数论,容斥定理

    GCD SUM Time Limit: 8000/4000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatu ...

  9. ZOJ2286 Sum of Divisors 筛选式打表

    我想我是和Segmentation Fault有仇,我一直以为是空间开大的问题,然后一直减少空间,还是SF,谁让n没有给范围了,qwq. 教训:以后注意输入范围和开的空间大小. #include< ...

随机推荐

  1. 错误源:WebForms UnobtrusiveValidationMode requires a ScriptResourceMapping for 'jquery'. Please add a ScriptResourceMapping named jquery(case-sensitive).

    Server Error in '/' Application. WebForms UnobtrusiveValidationMode requires a ScriptResourceMapping ...

  2. 浅谈JAVA集合框架(转载)_常用的Vector和HashMap

    原作者滴着:http://www.cnblogs.com/eflylab/archive/2007/01/20/625237.html Java提供了数种持有对象的方式,包括语言内置的Array,还有 ...

  3. ###《Max-Margin Early Event Detectors》

    Paper reading. #@author: gr #@date: 2014-03-11 #@email: forgerui@gmail.com Early Detection Abstract: ...

  4. JavaScript学习笔记(1)——JavaScript简介

          JavaScript一种解释性脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型.它的解释器被称为JavaScript引擎,该引擎为浏览器的一部分.JavaScript最早是用 ...

  5. MySql事务及JDBC对事务的使用

    一 .事务的几个重要特性 1. 原子性 事务内的每个内容不可分割,是一个统一的整体.或同时进行或同时消亡. 2.一致性 事务执行前和事务执行后,状态都是统一的.如A转B 100元,A和B数据总额度没有 ...

  6. List分页显示

    //对List集合 数据进行分页  int pageNum = page.getPageNo();// 当前显示第几页 int perPageNum = page.getPageSize(); // ...

  7. Codevs 1535 封锁阳光大学

    1535 封锁阳光大学 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大 ...

  8. 在Windows下用MingW 4.5.2编译FFmpeg

    1.下载FFmpeg(http://ffmpeg.org/download.html),解压. 2.进入MingW Shell,cd F:/Qt/ffmpeg(假定解压到F:/Qt/ffmpeg) 3 ...

  9. Asp.net Gridview导出Excel

    前台页面放一个GridView什么的就不说了,要注意的是在 <%@ Page Language="C#" AutoEventWireup="true" C ...

  10. NetBeans中文乱码解决办法

    一.Windows下NetBeans中文乱码解决办法 找到你的Netbeans安装目录下的etc文件夹,用记事本打开netbeans.conf,找到netbeans_default_options(不 ...