Frogs' Neighborhood
Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 6076   Accepted: 2636   Special Judge

Description

未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤iN)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1,x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1,x2,..., xn(0 ≤ xiN)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

  1. 3
  2. 7
  3. 4 3 1 5 4 2 1
  4. 6
  5. 4 3 1 4 2 0
  6. 6
  7. 2 3 1 1 2 1

Sample Output

  1. YES
  2. 0 1 0 1 1 0 1
  3. 1 0 0 1 1 0 0
  4. 0 0 0 1 0 0 0
  5. 1 1 1 0 1 1 0
  6. 1 1 0 1 0 1 0
  7. 0 0 0 1 1 0 0
  8. 1 0 0 0 0 0 0
  9.  
  10. NO
  11.  
  12. YES
  13. 0 1 0 0 1 0
  14. 1 0 0 1 1 0
  15. 0 0 0 0 0 1
  16. 0 1 0 0 0 0
  17. 1 1 0 0 0 0
  18. 0 0 1 0 0 0

Source

题意:
告诉每只青蛙有几个邻居(两只青蛙若生活在有水路相连的湖泊中则是邻居),用矩阵输出
湖泊的相连关系。

分析:
就是已知每个点的度数,判断是否可图。
第一想法是先把邻居多的安排好(贪心),开始没想到图论中的havel定理,只想到先要排序,然后
找到邻居的相应减1,然后直到所有的青蛙都找到邻居就结束这种操作。

havel定理:

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。

进一步,若图为简单图,则称此序列可简单图化。

1、Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的。
2、度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。
3、一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的。
4、
判定过程:(1)对当前数列排序,使其呈递减,(2)从S【2】开始对其后S【1】个数字-1,(3)
      一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。

5、举例:序列S:7,7,4,3,3,3,2,1 删除序列S的首项 7 ,对其后的7项每项减1,得到:6,3,2,2,2,1,0,

继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0,-1,到这一步出现了负数,因此

该序列是不可图的。

havel定理的应用:

对于一个给定的度序列,看能不能形成一个简单无向图。

Havel算法的思想简单的说如下:

(1)对序列从大到小进行排序。

(2)设最大的度数为t,把最大的度数置0,然后把最大度数后(不包括自己)的t个度数分别减1(意思就是

     把度数最大的点与后几个点进行连接)

(3)如果序列中出现了负数,证明无法构成。如果序列全部变为0,证明能构成,跳出循环.前两点不出现,

     就跳回第一步! 

感想:

看到越来越多转化为图连边来分析问题的做法,好奇妙啊好奇妙~

代码:

  1. #include<cstdio>
  2. #include<iostream>
  3. #include<algorithm>
  4. #include<cstring>
  5. using namespace std;
  6.  
  7. int f[12][12];
  8. struct node
  9. {
  10. int degree,flag;
  11. }a[12];
  12. bool cmp(node x,node y)
  13. {
  14. return x.degree>y.degree;
  15. }
  16. int main()
  17. {
  18. int T,i,j,n;
  19. scanf("%d",&T);
  20. while(T--)
  21. {
  22. memset(f,0,sizeof(f));
  23. scanf("%d",&n);
  24. for(i=1;i<=n;i++)
  25. {
  26. scanf("%d",&a[i].degree);
  27. a[i].flag=i;
  28. }
  29. bool succ=1;
  30. while(1)
  31. {
  32. sort(a+1,a+n+1,cmp);
  33. if(a[1].degree==0)
  34. break;
  35. for(i=2;i<=a[1].degree+1;i++)
  36. {
  37. a[i].degree--;
  38. f[a[1].flag][a[i].flag]=1;
  39. f[a[i].flag][a[1].flag]=1;
  40. if(a[i].degree<0)
  41. {
  42. succ=0;
  43. break;
  44. }
  45. }
  46. if(!succ) break;
  47. a[1].degree=0;
  48. }
  49. if(!succ) puts("NO\n");
  50. else
  51. {
  52. puts("YES");
  53. for(i=1;i<=n;i++)
  54. {
  55. for(j=1;j<=n;j++)
  56. printf("%d%c",f[i][j],j==n?'\n':' ');
  57. }
  58. puts("");
  59. }
  60. }
  61. return 0;
  62. }

12014030

fukan

1659

Accepted

164K

0MS

C++

1306B

2013-08-20 14:14:16



poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)的更多相关文章

  1. POJ 1659 Frogs' Neighborhood (贪心)

    题意:中文题. 析:贪心策略,先让邻居多的选,选的时候也尽量选邻居多的. 代码如下: #pragma comment(linker, "/STACK:1024000000,102400000 ...

  2. poj 1659 Frogs' Neighborhood (DFS)

    http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total S ...

  3. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  4. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  5. poj 1659 Frogs' Neighborhood( 青蛙的邻居)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 40 ...

  6. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  7. POJ 1659 Frogs' Neighborhood

    转载请注明出处:http://blog.csdn.net/a1dark 分析:切图论切的第一道题.也是图论的例题.主要用到一个Havel-Hakimi 定理 有以下两种不合理的情形: (1) 某次对剩 ...

  8. Poj 1659.Frogs' Neighborhood 题解

    Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和 ...

  9. poj 1659 Frogs' Neighborhood Havel-Hakimi定理 可简单图定理

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存 ...

随机推荐

  1. node初步一:HTTP请求

    一. 创建pathtest.js文件 var http= require('http' ); var url= require('url' ); function start (){ function ...

  2. Unity NGUI和UGUI与模型、特效的层级关系

    目录 1.介绍两大UI插件NGUI和UGUI 2.unity渲染顺序控制方式 3.NGUI的控制 4.UGUI的控制 5.模型深度的控制 6.粒子特效深度控制 7.NGUI与模型和粒子特效穿插层级管理 ...

  3. 设置服务器远程连接mysql

    一直单人开发所以没有考虑过这方面,到新公司要做合作开发,所以要进行设置,然后开始自己搞 下面把过程罗列一下: 1)由于使用的云服务器 ,所以上面都配置好了,直接配置了mysql的命令行输入密码就可以进 ...

  4. VC皮肤库之duilib

    首先是个国产的开源 的,directui 界面库,开放,共享,惠众,共赢,遵循bsd协议,可以免费用于商业项目,目前支持Windows 32 .Window CE.Mobile等平台. Duilib ...

  5. iOS: 学习笔记, 用代码驱动自动布局实例(swift)

    iOS自动布局是设置iOS界面的利器.本实例展示了如何使用自动布局语言设置水平布局, 垂直布局1. 创建空白iOS项目(swift)2. 添加一个控制器类, 修改YYAppDelegate.swift ...

  6. 2016030202 - github中sshkey信息设置

    根据github上面的提示生成ssh秘钥步骤 参考url:https://help.github.com/articles/generating-an-ssh-key/ 1.生成sshkey之前,检查 ...

  7. 轻量级表格插件Bootstrap Table。拥有强大的支持固定表头、单/复选、排序、分页、搜索及自定义表头等功能。

    Bootstrap Table是轻量级的和功能丰富的以表格的形式显示的数据,支持单选,复选框,排序,分页,显示/隐藏列,固定标题滚动表,响应式设计,Ajax加载JSON数据,点击排序的列,卡片视图等. ...

  8. register 不允许 block 模式,而默认的是

    Exception in thread "main" java.nio.channels.IllegalBlockingModeException at java.nio.chan ...

  9. 【技术贴】解决支付宝充值信用卡还款跳转到网上银行报错Error 404 - Not Found

    声明 : 本文在 GFDL 1.2 下发布,本文出处光大银行信用卡  http://bbs.090989.com/forum-186-1.html http://androidgao.blogspot ...

  10. 【POJ11855】 Buzzwords (后缀数组)

    Description The word “the” is the most commonthree-letter word. It evenshows up inside other words, ...