GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2611    Accepted Submission(s): 1090

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?

No?

Oh, you must do this when you want to become a "Big Cattle".

Now you will find that this problem is so familiar:

The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little
more difficult problem:

Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.

This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.

Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
 
知识储备:
 
一.互质的概念:

1、定义

    互质(relatively primeì)又叫互素。若N个整数的最大公因数是1,则称这N个整数互质。

  比如8,10的最大公因数是2,不是1,因此不是整数互质。

  7,10,13的最大公因数是1,因此这是整数互质。

  5和5不互质,由于5和5的公因数有1、5。

  1和不论什么数都成倍数关系,但和不论什么数都互质。由于1的因数仅仅有1,而互质数的原则是:仅仅要两数的公因数仅仅有1时。就说两数是互质数。1仅仅有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其它数的别的公因数了。所以1和不论什么数都互质(除0外)。

  互质数的写法:如c与m互质,则写作(c,m)=1。

  小学数学教材对互质数是这样定义的:“公约数仅仅有1的两个数。叫做互质数。”

  这里所说的“两个数”是指自然数。

  “公约数仅仅有 1”,不能误说成“没有公约数。

二.欧拉函数:

1.定义:

 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。比如euler(8)=4,由于1,3,5,7均和8互质。

2.说明:

Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),当中p1,p2……pn为x的全部素因数。x是不为0的整数。

(注意:每种质因数仅仅一个。比方 12 = 2*2*3 那么      φ(12) = 12 * (1-1/2) * (1-1/3)=4  )

euler(1)=1(唯一和1互质的数(小于等于)就是1本身)。

欧拉函数性质:  1、  φ(mn) = φ(m) φ(n)

2、若n为奇数。φ(2n) = φ(n)。

欧拉公式的延伸:一个数的全部质因子之和是euler(n)*n/2。

注意:在欧拉函数中,函数值是 [ 1 , n ] 中与 n  互质数个数

题意:
求小于n的gcd(i,n)大于1的个数 
思路 : 欧拉函数直接求gcd(i,n)==1的个数  用n减就可以,注意小于n,故再减去1.
 
详细代码例如以下:
 
#include<stdio.h>

int euler(int n)//欧拉函数
{
int res=n,i;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
while(n%i==0)
n/=i;//保证n一定是素数
}
if(n>1)
res=res/n*(n-1);
return res;
} int main()
{
int n;
while(scanf("%d",&n)&&n!=0)
printf("%d\n",n-euler(n)-1);//题目要求小于n,故还要减去1
return 0;
}

HDOJ 1787 GCD Again(欧拉函数)的更多相关文章

  1. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. hdu 1787 GCD Again (欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  4. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  5. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  10. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. chrome调试状态下动态加载的js

    在js文件中加入 //@ sourceURL=文件名.js

  2. HTML5的Server-Sent Events (SSE)

    HTML5有一个Server-Sent Events(SSE)功能,允许服务端推送数据到客户端.(通常叫数据推送).我们来看下,传统的WEB应用程序通信时的简单时序图: 现在Web App中,大都有A ...

  3. UnixODBC

    UnixODBC下载安装地址:http://www.unixodbc.org/ DOWNLOAD Distribution Format unixODBC is currently availible ...

  4. Object-C非正式协议与正式协议的区别

    Object-C非正式协议与正式协议的区别 这两个概念困扰我很久了,一直都很像搞清楚到非正式协议和正式协议有什么区别和联系,下面结合网上的资料和自己的看法谈谈这个问题. 一.非正式协议 显然这个名词是 ...

  5. BZOJ 1070 修车

    Description 同一时刻有\(N\)位车主带着他们的爱车来到了汽车维修中心.维修中心共有\(M\)位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这\(M\)位技术 ...

  6. HttpClient4.3.6 实现https访问

    package httptest; import java.io.IOException; import java.nio.charset.Charset; import java.security. ...

  7. ExtJS简单的动画效果2(ext js淡入淡出特效)

    Ext 开发小组则提供了 Fx 类集中处理了大部分常用的 js 动画特效,减少了我们自己手写代码的复杂度. 面我给出一个简单的实例代码,其中囊括了大部分的 Ext 动画效果: (注意导入js和css文 ...

  8. Unity3d 跑酷游戏 之Character Controller篇

    unity3d  Character Controller @by  广州小龙 做3D跑酷游戏,也慢慢的学习了一些东西,从开发过程中积累了一些小的知识点跟大家分享一下! 1. 这个Revert按钮的意 ...

  9. 《STL源码剖析》环境配置

    首先,去侯捷网站下载相关文档:http://jjhou.boolan.com/jjwbooks-tass.htm. 这本书采用的是Cygnus C++ 2.91 for windows.下载地址:ht ...

  10. qml学习:对象和属性

    qml学习:对象和属性 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 参考文档<<Qt及Qt Quick开发实战精解.pdf>> ...