HDOJ 1787 GCD Again(欧拉函数)
GCD Again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2611 Accepted Submission(s): 1090
No?
Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little
more difficult problem:
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
2
4
0
0
1
1、定义
互质(relatively primeì)又叫互素。若N个整数的最大公因数是1,则称这N个整数互质。
比如8,10的最大公因数是2,不是1,因此不是整数互质。
7,10,13的最大公因数是1,因此这是整数互质。
5和5不互质,由于5和5的公因数有1、5。
1和不论什么数都成倍数关系,但和不论什么数都互质。由于1的因数仅仅有1,而互质数的原则是:仅仅要两数的公因数仅仅有1时。就说两数是互质数。1仅仅有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其它数的别的公因数了。所以1和不论什么数都互质(除0外)。
互质数的写法:如c与m互质,则写作(c,m)=1。
小学数学教材对互质数是这样定义的:“公约数仅仅有1的两个数。叫做互质数。”
这里所说的“两个数”是指自然数。
“公约数仅仅有 1”,不能误说成“没有公约数。
”
二.欧拉函数:
1.定义:
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。比如euler(8)=4,由于1,3,5,7均和8互质。
2.说明:
Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),当中p1,p2……pn为x的全部素因数。x是不为0的整数。
(注意:每种质因数仅仅一个。比方 12 = 2*2*3 那么 φ(12) = 12 * (1-1/2) * (1-1/3)=4 )
euler(1)=1(唯一和1互质的数(小于等于)就是1本身)。
欧拉函数性质: 1、 φ(mn) = φ(m) φ(n)
2、若n为奇数。φ(2n) = φ(n)。
欧拉公式的延伸:一个数的全部质因子之和是euler(n)*n/2。
注意:在欧拉函数中,函数值是 [ 1 , n ] 中与 n 互质数个数
#include<stdio.h> int euler(int n)//欧拉函数
{
int res=n,i;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
while(n%i==0)
n/=i;//保证n一定是素数
}
if(n>1)
res=res/n*(n-1);
return res;
} int main()
{
int n;
while(scanf("%d",&n)&&n!=0)
printf("%d\n",n-euler(n)-1);//题目要求小于n,故还要减去1
return 0;
}
HDOJ 1787 GCD Again(欧拉函数)的更多相关文章
- HDU 1787 GCD Again(欧拉函数,水题)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 1787 GCD Again (欧拉函数)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 4983 Goffi and GCD(欧拉函数)
Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- HDU 2588 GCD(欧拉函数)
GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- 【POJ1823】【线段树】Hotel
Description The "Informatics" hotel is one of the most luxurious hotels from Galaciuc. A l ...
- UILongPressGestureRecognizer的selector多次调用解决方法
当你使用longPress gesture recognizer 时,你可能会发现调用了多次. UILongPressGestureRecognizer *longPress = [[UILongPr ...
- Magento 2.0 安装
环境: 直接升到最新版PHP5.6.x 刚才开MAC OS PHP 5.5 CENTOS PHP 5.5 composer install 依懒包错误.反复安装组件.还是不行.后来决定重新编释最 ...
- 已安装好的tengine编译添加未被安装的模块
nginx -V 可以查看原来编译时都带了哪些参数 原来的参数: --prefix=/usr/local/tengine 需添加的参数: --with-http_stub_status_module ...
- iOS触摸事件处理
iOS触摸事件处理 主要是记录下iOS的界面触摸事件处理机制,然后用一个实例来说明下应用场景. 一.处理机制 界面响应消息机制分两块, (1)首先在视图的层次结构里找到能响应消息的那个视图. (2 ...
- nginx+uwsgi+WSGI applications
uwsgi一个专业的部署运用的工具,不仅能够部署Python运用,还能够部署其他运用比如Perl,Ruby等 uWSGI 安装: pip install uwsgi WSGI application( ...
- Spring 配置自动扫描spring bean配置
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w ...
- [BZOJ 1085] [SCOI2005] 骑士精神 [ IDA* 搜索 ]
题目链接 : BZOJ 1085 题目分析 : 本题中可能的状态会有 (2^24) * 25 种状态,需要使用优秀的搜索方式和一些优化技巧. 我使用的是 IDA* 搜索,从小到大枚举步数,每次 DFS ...
- 【Java】java的内存浅析
一.闲谈下 201407月记着那时候身体垮了下来,呵呵.想说,对自己的说,也是对大家的负责吧.那时候胸疼胸闷,然后几乎累垮了,我还坚持了一星期,那一星期真的迷迷糊糊.完全不能看代码,看代码就晕.一直想 ...
- 转:USB主机控制器(Host Controller)--深入理解
1. 主机控制器(Host Controller) • UHCI: Universal Host Controller Interface (通用主机控制接口, USB1.0/1.1) • ...