从源码剖析一个Spark WordCount Job执行的全过程
WordCount可以说是分布式数据处理框架的”Hello World”,我们可以以它为例来剖析一个Spark Job的执行全过程。
我们要执行的代码为:
只有一行,很简单也很经典的代码。这里的collect
作为一个action,将触发一个Job,现在我们从源码开始剖析这个Job执行的全部过程。我这次读的源码是Spark 1.4.1的release版本。
为了方便描述,我们把上面的代码先进行一下拆分,这样可以清晰的看到每一步生成的RDD及其依赖关系,并方便下面分析时进行引用:
1. collect触发Job
首先,collect调用了SparkContext上的runJob方法。这个方法是一个阻塞方法,会在Job完成之前一直阻塞等待,直到Job执行完成之后返回所得的结果:
RDD.collect
需要注意的是这里传入了一个函数,这个函数就是这个Job的要执行的任务。后面我们可以看到,它将会被包装并序列化后发送到要执行它的executor上,并在要处理的RDD上的每个分区上被调用执行。
2. DAGScheduler提交Job
SparkContext的runJob被调用之后,这个Job的信息被递传给了SparkContext持有的一个DAGScheduler上。DAGScheduler本身维护着一个消息队列,在收到这个Job之后,将给自己的消息队列发送一个JobSubmitted消息。这个消息中包含了新生成的一个JobId, 触发action的RDD,经过清理后的闭包函数,要处理的各个分区的在RDD中的索引,以及一些其他信息。
DAGScheduler的消息队列在收到JobSubmitted消息后,将触发调用handleJobSubmitted方法。在这个方法中,首先会根据这个触发action的RDD的依赖信息计算出这个Job的所有Stage。在这个WordCount中,我们是在reduceByKey生成的shuffledRDD3(其生成的过程涉及到通用的combineByKey方法,具体可以参考这篇文章)上触发的action,所以我们的ResultStage所对应的finalRDD就是shuffledRDD3,ResultStage所要执行的就是shuffledRDD3的所有分区。shuffledRDD3有一个ShuffleDependency,指向mapPartitionsRDD2,据此ShuffleDependency会生成一个ShuffleMapStage,它是ResultStage的父Stage。
3. 根据继承关系分析Stages
在分析出所有的Stage之后,DAGScheduler会根据ResultStage创建出一个ActiveJob对象,用来表示这个活跃的Job。然后提交ResultStage,但是在真正执行这个Stage之前,先递归的判断它有没有父Stage,若有的话先提交它的父Stage,并将当前Stage加入等待队列;若没有父Stage,才会真正的开始执行这个Stage。等待队列中的Stage,会在父Stage都执行完成之后再被执行。
由此可以看出,在一个Job中,Stage之间必须按序执行,后一个Stage的执行将依赖前一个Stage的结果。一个Job只会有一个ResultStage,并且这个ResultStage一定会是整个Job的最后一个Stage,所以ResultStage执行的结束也就标志着整个Job的结束。
4. Task的创建和提交
按照之前的分析,我们的Job一共有两个Stage,一个ShuffleMapStage,一个ResultStage,并将先执行ShuffleMapStage。在执行Stage的时候,会按此Stage对应的RDD的分区数量,对应每一个分区创建一个Task。如果是ShuffleMapStage则创建ShuffleMapTask,如果是ResultStage则创建ResultTask。这些Task在后面将会被序列化后发到其他的executor上面去运行。
在这里分析一下每个Task包含哪些信息
两种Task都会包含的信息有 (1)当前Stage对应的RDD对象(轻量级) (2)当前Stage的ID (3)要处理的那个分区信息(轻量级),以及该任务可能的最优执行位置(例如,对于hdfs上的文件,HadoopRDD中会记录其每一个分区存储在集群的位置,并将这个位置通过依赖继承到其子RDD)除此之外,ShuffleMapTask还包含了对应的ShuffleDependency的对象(这其中实际上有分区的方法,数据合并的方法等计算时所需的信息);ResultTask还包含了当前这个Job最终要执行在每个数据上的函数(在此情况下就是collect传给SparkContext的那个函数)。
在对每个要处理的分区创建出各个Task之后,DAGScheduler会将同一个Stage的各个Task合并成一个TaskSet,并将其提交给TaskScheduler。至此,调度这些Task的工作就交给了TaskScheduler来进行。
TaskScheduler在收到这个TaskSet之后,首先为其创建一个TaskSetManager,这个TaskSetManager将辅助任务的调度。然后TaskScheduler将会调用SchedulerBackend上的reviveOffers方法去申请可用的资源。
5. SchedulerBackend分配资源(executors)和发送Task
SchedulerBackend是一个接口,它在不同的部署模式下会有不同的实现(实际上TaskScheduler也是这样)。SchedulerBackend的作用是调度和控制整个集群里面的资源(我是这么理解的,这里的资源指的是可用的executors),当reviveOffers方法被调用后,它会将当前可用的所有资源信息,通过调用TaskScheduler的resourceOffers提供给TaskScheduler(实际上这个过程是通过另一个EndPoint类以消息队列的方式实现的,这样可以保证同时只会进行一个对资源的申请或释放过程)。
TaskScheduler在收到当前所有可用的资源信息后,会将这些资源信息按序提供给当前正在执行的多个TaskSet,每个TaskSet再根据这些资源信息将当前可以执行的Task序列化后包装到一个TaskDescription对象中返回(这个TaskDescription对象中也包含了这个任务将要运行在哪个executor上),最终通过TaskScheduler将所有当前的资源情况可以执行的Task对应的TaskDescription返回给SchedulerBackend。
SchedulerBackend这时才根据每个TaskDescription将executors资源真正的分配给这些Task,并记录已分配掉的资源和剩余的资源,然后将TaskDescription中序列化后的Task通过网络(Spark使用akka框架)发送给它对应的executor。
6. executor执行Task
集群中的executor在收到Task后,申请一个线程开始运行这个Task。这是整个Job中最核心的部分了,真正的计算都在这一步发生。首先将其反序列化,然后调用这个Task对象上的runTask方法。在这里对于ShuffleMapTask和ResultTask,runTask方法有着不同的实现,并将返回不同的内容。我们分别来分别分析。
对于ShuffleMapTask,runTask首先获取对应的RDD和ShuffleDependency。在这里对应的RDD是mapPartitionsRDD2,ShuffleDependency中则有着合并的计算信息。然后调用RDD的iterator方法获取一个对应分区数据的迭代器。如果当前RDD分区的数据已经在之前计算过了,则会直接去内存或磁盘中获取,否则在此时就会调用mapPartitionsRDD2的compute方法,根据其依赖去计算它的分区数据。如果ShuffleDependency中的mapSideCombine标记为true,就会将iterator方法返回的分区数据在这里(也就是map端)进行合并(此时要求ShuffleDependency中的aggregator不为空,aggregator中包含了如何将数据进行合并的信息)。然后根据ShuffleDependency中的partitioner(默认是一个HashPartitioner)计算出每条数据在其结果端(就是shuffleRDD3中)的分区,并将其写入到本地磁盘中对应的文件中去(在这里写入方法有多种实现方式,1.4.1的版本默认是用了SortShuffleManager,还有的其他实现是HashShuffleManager和UnsafeShuffleManager,具体的实现方法在此处就不详说了)。当分区的每条数据都处理完后,runTask会返回一个MapStatus,这其中包含了一个BlockManagerId(标记了这个任务被执行的位置,也就是Map后的数据存储的位置)以及每个结果分区(每个reduceId)的数据的大小信息。最后这个MapStatus将通过网络发回给driver,dirver将其记录。
ShuffleMapTask.runTask
对于ResultTask,runTask首先也是获取对应的RDD和要在数据上执行的函数func。在这里对应的RDD应该是shuffleRDD3,然后调用RDD上的iterator获取这个分区的数据,并将其传入func函数中,将func函数的返回值作为runTask的返回值返回。过程看似简单,实际上在shuffleRDD3上调用iterator时就对应了shuffle的reduce端的合并。从shuffleRDD3的compute方法的实现可以看出,它的每个分区的数据都要去执行了ShuffleMapTask的executor上面获取,所以会产生大量的网络流量和磁盘IO。这个过程就是MapReduce范式中的shuffle过程,这里面还有很多的细节我并没有详述,但是这个过程十分关键,它的实现效率直接决定了分布式大数据处理的效率。
ResultTask.runTask
7. executor返回结果
在runTask计算结束返回数据后,executor将其返回的数据进行序列化,然后根据序列化后数据的大小进行判断:如果数据大与某个值,就将其写入本地的内存或磁盘(如果内存不够),然后将数据的位置blockId和数据大小封装到一个IndirectTaskResult中,并将其序列化;如果数据不是很大,则直接将其封装入一个DirectTaskResult并进行序列化。最终将序列化后的DirectTaskResult或者IndirectTaskResult递传给executor上运行的一个ExecutorBackend上(通过statusUpdate方法)。
ExecutorBackend如上面的SchedulerBackend有着相似的功能(实际上,对于local模式,这两个类都由一个LocalBackend实现),将结果封入一个StatusUpdate消息透传给一个对应的EndPoint类,EndPoint类中收到这个消息后将该消息再通过网络发送给driver。
8. driver接收executor返回的结果并释放资源
在driver端的SchedulerBackend收到这个StatusUpdate消息之后,将结果续传给TaskScheduler,并进行资源的释放,在释放资源后再调用一次reviveOffers,这样又可以重复上面所描述的过程,将释放出来的资源安排给其他的Task来执行。
9. TaskResultGetter解析并拉取结果
TaskScheduler在收到任务结果后,将这个任务标记为结束,然后使用一个TaskResultGetter类来进行结果的解析。TaskResultGetter将结果反序列化,判断如果其是一个DirectTaskResult则直接抽取出其中的结果;如果是一个IndirectTaskResult则需要根据其中的blockId信息去对应的机器上拉取结果。最终都是将结果拉取到driver的内存中(这就是我们最好不要在大数据集上执行类似collect的方法的原因,它会将所有的数据拉入driver的内存中,造成大量的内存开销,甚至内存不足)。然后TaskResultGetter会将拉取到的结果递交给TaskScheduler,TaskScheduler再将此结果递交给DAGScheduler。
10. 处理结果并在Job完成时返回
DAGScheduler在收到Task完成的消息后,先判断这完成的是一个什么任务。如果是一个ShuffleMapTask则需要将返回的结果(MapStatus)记录到driver中,并判断如果当前的ShuffleMapStage若是已经完成,则去提交下一个Stage。如果是一个ResultTask完成了, 则将其结果递交给JobWaiter,并标记这个任务以完成。
JobWaiter是DAGScheduler在最开始submitJob的时候创建的一个对象,用于阻塞等待任务的完成,并进行结果的处理。JobWaiter在每收到一个ResultTask的结果时,都将结果在resultHandler上执行。这个resultHandler则是由SparkContext传进来的一个函数,其作用是将数据放入一个数组中,这个数组最终将作为SparkContext.runJob方法的返回值,被最开始的collect方法接收然后返回。若JobWaiter收到了每个ResultTask的结果,则表示整个Job已经完成,此时就停止阻塞等待,于是SparkContext.runJob返回一个结果的数组,并由collect接收后返回给用户程序。
至此,一个Spark的WordCount执行结束。
总结
本文从源码的角度详细分析了一个Spark Job的整个执行、调度的过程,不过很多东西还只是浅尝辄止,并未完全深入。尽管如此,经过连续好几天的分析,我还是觉得收获颇丰,对Spark的实现原理有了更加深入的理解,甚至对MapReduce的编程范式以及其shuffle过程也增加了不少理解。PS:其实从一开始我到分析结束都是没有做任何记录的,只因为一直一知半解实在不知道如何来做记录,所以只是去查阅一些资料和使劲儿的阅读源码。在我自认为分析结束后,我才开始写这篇记录,但是在写的过程中我才发现我分析的过程有一些并不是很清晰,然后重新去看,才真正弄的比较清晰了。可见写博文是很重要的过程,不仅是将学到的知识分享出来,而且对自身的知识也有很好的加固作用。
从源码剖析一个Spark WordCount Job执行的全过程的更多相关文章
- Apache Spark源码剖析
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著 ISBN 978-7-121-25420- ...
- 《Apache Spark源码剖析》
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了 ...
- (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...
- Spark源码剖析 - SparkContext的初始化(三)_创建并初始化Spark UI
3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用 ...
- Spark MLlib 之 StringIndexer、IndexToString使用说明以及源码剖析
最近在用Spark MLlib进行特征处理时,对于StringIndexer和IndexToString遇到了点问题,查阅官方文档也没有解决疑惑.无奈之下翻看源码才明白其中一二...这就给大家娓娓道来 ...
- spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox、Outbox剖析
在上篇 spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRPCEnv 中,涉及到了Diapatcher 内容,未做过多的剖析.本篇来剖析一下它的工作原理. Dispatc ...
- spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClientFactory剖析
spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClientFactory剖析 TransportContext 首先官方文档对Transpor ...
- Spark源码剖析 - SparkContext的初始化(二)_创建执行环境SparkEnv
2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cl ...
- C# Dictionary源码剖析---哈希处理冲突的方法有:开放定址法、再哈希法、链地址法、建立一个公共溢出区等
C# Dictionary源码剖析 参考:https://blog.csdn.net/exiaojiu/article/details/51252515 http://www.cnblogs.com/ ...
随机推荐
- C# 格式化字符串(转载)
1 前言 如果你熟悉Microsoft Foundation Classes(MFC)的CString,Windows Template Library(WTL)的CString或者Standard ...
- C语言自带的快速排序(qsort)函数使用方法
感觉打快排太慢了,找到了c语言自带的函数.这函数用起来没c++的方便,不过也够了. 函数名称:qsort,在头文件:<stdlib.h>中 不多说,上代码: #include <st ...
- KVC vs KVO(内容为转载记录,整合大家的总结为我所用)
KVC即key-value coding的缩写, KVO即key-value observing的缩写 假如需要掌握Key-Value Observing机制,那么需要阅读本文应该有帮助.本文提供了K ...
- hdu 3487
splay #include<cstdio> #include<cstring> #include<iostream> #include<algorithm& ...
- Codeforces Round #209 (Div. 2)
A: 要么是两次要么4次,判断是否在边界: #include<cstdio> using namespace std; int main() { int n,m,x; ; scanf(&q ...
- poj 1811 Prim test
基本上一个裸的Miller_Rabin大素数判定和一个裸的Pollard_rho素数分解算法,当模板用吧! #include<cstdio> #include<algorithm&g ...
- SPRING IN ACTION 第4版笔记-第五章BUILDING SPRING WEB APPLICATIONS-003-示例项目用到的类及配置文件
一.配置文件 1.由于它继承AbstractAnnotationConfigDispatcherServletInitializer,Servlet容器会把它当做配置文件 package spittr ...
- STL priority_queue sort 自定义比较终极模板
比较有两种重载,一种是类内部的bool operator<( 只有一个参数 ),当然bool operator< 也可以拿到类的外面:另外一种是写一个cmp,利用cmp返回作为sort的第 ...
- C#中的OLEDB连接2
在通过ADO对Excel对象进行连接时(此时Excel则认为是一个数据源),需要配置对Excel数据源对应的连接串,这个连接串中包括了Provider信息(其实类似对数据库进行连接操作时,都需要指定连 ...
- error opening registry key software/javasoft/java runtime environment
些问题是由于多个版本java相互冲突,查看环境变量,删除其中一个即可.1.把Path里的%JAVA_HOME%\bin;放到最前面就可以,解决了给分! 2.是因为文件夹“%SystemRoot%\sy ...