#define _CRT_SECURE_NO_WARNINGS
/*
7 10
0 1 5
0 2 2
1 2 4
1 3 2
2 3 6
2 4 10
3 5 1
4 5 3
4 6 5
5 6 9
0 6
*/
#include <iostream>
#include <vector>
#include <utility>
#include <queue>
#include <functional>
#include <algorithm>
#include <cstdio>
using namespace std; const int maxn = + ;
const int INF = ;
int V, E;
int Prev[maxn]; //最短路上的前驱顶点
int d[maxn];
int cost[maxn][maxn]; //i->j 上的权值
int used[maxn]; void input();
void init();
//求从起点s出发到各个顶点的最短距离
void dijkstra(int s); void init() {
for (int i = ; i < V; i++) {
for (int j = ; j < V; j++) {
if (i == j) {
cost[i][j] = ;
}
else {
cost[i][j] = INF;
}
}
}
} void input()
{
int s, t, ct;
for (int i = ; i < E; i++) {
cin >> s >> t >> ct;
cost[s][t] = cost[t][s] = ct;
}
} //从s点出发到各个顶点的最短距离
void dijkstra(int s)
{
fill(d, d + V, INF);
fill(used, used + V, false);
fill(Prev, Prev + V, -);
d[s] = ; while (true) {
int v = -;
for (int u = ; u < V; u++) {
if (!used[u] && (v == - || d[u] < d[v]))
v = u; //找出到下一条尝试的顶点中距离最短的点
} if (v == -) break;
used[v] = true; for (int u = ; u < V; u++) {
if (d[u] > d[v] + cost[v][u]) {
d[u] = d[v] + cost[v][u]; //从v到各个临边u中最短的路-->存放到d[u],用于下一次计算
Prev[u] = v; //u的前驱是v
}
}
}
} //到顶点t的最短路
vector<int> get_path(int t) {
vector<int> path;
for (; t != -; t = Prev[t]) path.push_back(t); //不断沿着Prev[t]走直到 t = s
//这样得到的是按照t到s的顺序,所以翻转之
reverse(path.begin(), path.end());
return path;
} int main()
{
cin >> V >> E;
init();
input();
int st, ov;
cin >> st >> ov;
dijkstra(st);
cout << d[ov] << endl;
cout << "Debug..........\n";
vector<int> path = get_path(ov);
for (int i = ; i < path.size(); i++) {
cout << path[i] << " ";
} cout << endl;
return ;
}

Dijkstra算法:任意两点间的最短路问题 路径还原的更多相关文章

  1. 【算法】Floyd-Warshall算法(任意两点间的最短路问题)(判断负圈)

    求解所有两点间的最短路问题叫做任意两点间的最短路问题. 可以用动态规划来解决, d[k][i][j] 表示只用前k个顶点和顶点i到顶点j的最短路径长度. 分两种情况讨论: 1.经过顶点k,  d[k] ...

  2. 任意两点间的最短路问题(Floyd-Warshall算法)

    /* 任意两点间的最短路问题(Floyd-Warshall算法) */ import java.util.Scanner; public class Main { //图的顶点数,总边数 static ...

  3. 图算法之Floyd-Warshall 算法-- 任意两点间最小距离

    1.Floyd-Warshall 算法 给定一张图,在o(n3)时间内求出任意两点间的最小距离,并可以在求解过程中保存路径 2.Floyd-Warshall 算法概念 这是一个动态规划的算法. 将顶点 ...

  4. 任意两点间的最短路问题(Floyd-Warshall算法)

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  5. C++求图任意两点间的所有路径

    基于连通图,邻接矩阵实现的图,非递归实现. 算法思想: 设置两个标志位,①该顶点是否入栈,②与该顶点相邻的顶点是否已经访问. A 将始点标志位①置1,将其入栈 B 查看栈顶节点V在图中,有没有可以到达 ...

  6. AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...

  7. LCA - 求任意两点间的距离

    There are n houses in the village and some bidirectional roads connecting them. Every day peole alwa ...

  8. HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题

    参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...

  9. 任意两点间最短距离floyd-warshall ---- POJ 2139 Six Degrees of Cowvin Bacon

    floyd-warshall算法 通过dp思想 求任意两点之间最短距离 重复利用数组实现方式dist[i][j] i - j的最短距离 for(int k = 1; k <= N; k++) f ...

随机推荐

  1. node的router路由。

    使用router可以实现一个小型的express. router继承了大部分的app = express()的方法. 使用router可以工程化管理项目.router使用以后app只能在最开始去存在. ...

  2. APS.NET MVC4生成解析二维码简单Demo

    一.视图 @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta name="viewpor ...

  3. Windows 聆听 简单使用体验

    1. 点击windows 按键 输入语音 按照操作 选择语音 并且读出那一段话. 2. 可以将windows 语音识别 添加到开始面板 3. 使用时 点击 该图标,然后点击麦克风按钮 聆听效果如图示 ...

  4. [转帖] Win10 多桌面转换的快捷键

    http://down.52pk.com/zhishi/52202.shtml win10系统中用户除了可以切换任务之外,还可以进行多桌面切换,就像是切换了电脑屏幕一样,可能网友们还都不知道win10 ...

  5. Spring各个jar包的作用

    Spring AOP:Spring的面向切面编程,提供AOP(面向切面编程)的实现 Spring Aspects:Spring提供的对AspectJ框架的整合Spring Beans:Spring I ...

  6. 工作中经常用到github上优秀、实用、轻量级、无依赖的插件和库

    原文收录在我的 GitHub博客 (https://github.com/jawil/blog) ,喜欢的可以关注最新动态,大家一起多交流学习,共同进步,以学习者的身份写博客,记录点滴. 按照格式推荐 ...

  7. BZOJ5338[TJOI2018]xor——主席树+dfs序

    题目描述 现在有一颗以1为根节点的由n个节点组成的树,树上每个节点上都有一个权值vi. 现在有Q 次操作,操作如下: 1  x y    查询节点x的子树中与y异或结果的最大值 2 x y z     ...

  8. Mac 下重新安装配置ibm Lotus 邮箱

    若邮箱之前有人使用,需要重新安装.在卸载程序之后,发现仍旧无法重新配置新的账号. 此时需要删除用户目录下的2个文件: /Library/Application Support/IBM Notes Da ...

  9. 自学Linux Shell15.2-作业控制命令(jobs/bg/nice/renice/at/atp/atrm/crontab)

    点击返回 自学Linux命令行与Shell脚本之路 15.1-作业控制命令(jobs/bg/nice/renice/at/atp/atrm/crontab) 1  控制作业 1.1查看作业 (jobs ...

  10. Mysql 数据库 基础代码

    -- 创建数据库 CREATE DATABASE book; -- 创建作者表 CREATE TABLE authors( Id int not NULL, -- 作者编号 Fname VARCHAR ...