Ignatius's puzzle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9859    Accepted Submission(s): 6898

Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 
Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 
Sample Input
11
100
9999
 
Sample Output
22
no
43
 
 

若a/b=x...0  称a能被b整除,b能整除a,即b|a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。

a%b==0

摘自discuss

题目大意:

方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。

现假设存在这个数a ,因为对于任意x方程都成立

所以,当x=1时f(x)=18+ka

又因为f(x)能被65整出,故设n为整数

可得,f(x)=n*65;

即:18+ka=n*65; n为整数

则问题转化为,

对于给定范围的a只需要验证,

是否存在一个a使得(18+k*a)%65==0

所以容易解得

注意,这里有童鞋不理解为毛a只需到65即可

因为,当a==66时

也就相当于已经找了一个周期了,所以再找下去也找不到适当的a了
(18+k*a)%65=(18%65+k*a%65)%65;
当a=66时k*66%65==k%65(即a=1时)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
using namespace std;
#define MA 10010
int main()
{
int n,i,k;
while(~scanf("%d",&k))
{
for(i=;i<=;i++)
{
if((+i*k)%==)
{
printf("%d\n",i);
break;
}
}
if(i>=)
printf("no\n");
} return ;
}
 

HDU1098---数学的更多相关文章

  1. 数学: HDU1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  3. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  4. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  5. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  6. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  7. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  8. 如何解决Maple的应用在数学中

    对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...

  9. 如何让Maple中的数学引擎进入你的桌面应用程序和网站

    MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...

  10. 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...

随机推荐

  1. Integrating Jenkins and Apache Tomcat for Continuous Deployment

    Installation via Maven WAR Overlay - Jenkins - Jenkins Wikihttps://wiki.jenkins.io/display/JENKINS/I ...

  2. Server Tomcat v7.0 Server at libra failed to start

    https://stackoverflow.com/questions/13244233/server-tomcat-v7-0-server-at-localhost-failed-to-start- ...

  3. 一种快速统计SQL Server每个表行数的方法

    转载自:http://www.cnblogs.com/kenyang/archive/2013/04/09/3011447.html 我们都知道用聚合函数count()可以统计表的行数.如果需要统计数 ...

  4. Comparer Under Centos 7

    Kompare 效果还行.

  5. Oracle12c Clone PDB 的方法

    1. 创建PDB的存放路径,举例: 2. 设置 数据库创建数据文件的目录 alter system set db_Create_file_dest='C:\app\Administrator\orad ...

  6. Smarty 变量修饰器

    为了更方便的实现 功能与显示分离,通常会用 smarty 将功能代码中的数据 assign 到页面中,在页面中合理使用 smarty 的修饰方法,会使页面显示更美观! 一个数据可同时使用多个修饰函数, ...

  7. selenium之测试卫星资料页面操作(元素遍历)

    # 测试气象卫星资料页面功能 # author:gongxr # date:2017-07-24 import random, time from selenium import webdriver ...

  8. java List 根据属性排序

    Collections.sort(fileItems, new Comparator<FileItem>() { public int compare(FileItem arg0, Fil ...

  9. wamp下var_dump()相关问题

    PHP 使用var_dump($arr)时 没有格式化输出. 原因是没有启用‘XDebug’扩展 [xdebug]zend_extension ="d:/wamp/bin/php/php7. ...

  10. webapi返回泛型给easyui

    由于之前遇到的easyui调用webapi的问题. 参见 :http://blog.csdn.net/hanjun0612/article/details/51144991 所以就考虑,封装一个泛型用 ...