题目来源: Project Euler
基准时间限制:6 秒 空间限制:131072 KB 分值: 640 
定义F(n)表示最小公倍数为n的二元组的数量。
即:如果存在两个数(二元组)X,Y(X <= Y),它们的最小公倍数为N,则F(n)的计数加1。
例如:F(6) = 5,因为[2,3] [1,6] [2,6] [3,6] [6,6]的最小公倍数等于6。
 
给出一个区间[a,b],求最小公倍数在这个区间的不同二元组的数量。
例如:a = 4,b = 6。符合条件的二元组包括:
[1,4] [2,4] [4,4] [1,5] [5,5] [2,3] [1,6] [2,6] [3,6] [6,6],共10组不同的组合。
 
Input
输入数据包括2个数:a, b,中间用空格分隔(1 <= a <= b <= 10^11)。
Output
输出最小公倍数在这个区间的不同二元组的数量。
Input示例
4 6
Output示例
10

数学问题 莫比乌斯反演

请开始你的反演!
设:

$$ans(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
那么 $ans(b)-ans(a-1)$ 就是最终答案

尝试化简上面的式子:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
$$\sum_{d=1}^{n} \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*j<=\frac{n}{d}] [gcd(i,j)==1]$$
$$\sum_{d=1}^{n} \sum_{k=1}^{\frac{n}{d}} \mu(k) \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*k*j*k<=\frac{n}{d}] $$
$$\sum_{k=1}^{n} \mu(k) \sum_{d=1}^{\frac{n}{k}} \sum_{i=1}^{\frac{n}{dk}} \sum_{j=1}^{\frac{n}{dk}} [i*j*d<=\frac{n}{k^2}] $$

  显然d和k值大到一定程度,最后面就是0了,所以我们可以缩小求和上界:

$$\sum_{k=1}^{\sqrt n} \mu(k) \sum_{d=1}^{\frac{n}{k^2}} \sum_{i=1}^{\frac{n}{dk^2}} \sum_{j=1}^{\frac{n}{dk^2}} [i*j*d<=\frac{n}{k^2}] $$

  这个范围很友好,我们可以枚举$\mu(k)$,求满足条件的i j d三元组数量。
  需要求的三元组是无序的,为了不重不漏地计数,我们可以分别求出有序(单调上升)的三元组数量,对于其中三个数各不同的、有两个数相同的、三个数都相同的分别计数,然后乘以对应的组合数即可。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
int pri[mxn],mu[mxn],cnt=;
bool vis[mxn];
void init(){
mu[]=;
for(int i=;i<mxn;i++){
if(!vis[i]){
pri[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt && pri[j]*i<mxn;j++){
vis[pri[j]*i]=;
if(i%pri[j]==){mu[pri[j]*i]=;break;}
mu[pri[j]*i]=-mu[i];
}
}
return;
}
LL calc(LL n){
if(!n)return ;
LL i,j,k,ed=floor(sqrt(n));
LL res=,tmp=;
for(k=;k<=ed;k++){
if(mu[k]){
tmp=;
LL ED=n/(k*k);
for(i=;i*i*i<=ED;i++){
for(j=i+;j*j*i<=ED;j++)
tmp+=(ED/(i*j)-j)*+;
tmp+=(ED/(i*i)-i)*;
tmp++;
}
res+=mu[k]*tmp;
}
}
return (res+n)/;
}
LL a,b;
int main(){
init();
scanf("%lld%lld",&a,&b);
printf("%lld\n",calc(b)-calc(a-));
return ;
}

51nod1222 最小公倍数计数的更多相关文章

  1. 51Nod1222 最小公倍数计数 数论 Min_25 筛

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1222.html 题意 给定 $a,b$, 求 $$\sum_{n=a}^b \sum_{i=1}^n ...

  2. 51nod1222最小公倍数计数

    51nod1222 http://210.33.19.103/contest/1113/problem/2 同学的神仙做法: 首先考虑先去掉X<=Y的限制,也就是先计算满足要求的任意有序pair ...

  3. 51nod1222 最小公倍数计数 莫比乌斯反演 数学

    求$\sum_{i = 1}^{n} \sum_{j = 1}^{i} [lcm(i, j) \le n]$因为这样不好求,我们改成求$\sum_{i = 1}^{n} \sum_{j = 1}^{n ...

  4. [51nod1222] 最小公倍数计数(莫比乌斯反演)

    题面 传送门 题解 我此生可能注定要和反演过不去了--死都看不出来为啥它会突然繁衍反演起来啊-- 设\(f(n)=\sum_{i=1}^n\sum_{j=1}^n[{ij\over\gcd(i,j)} ...

  5. 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数

    [题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)

    题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j ...

  8. 【51Nod 1222】最小公倍数计数

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去 ...

  9. 51nod 1222 最小公倍数计数【莫比乌斯反演】

    参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...

随机推荐

  1. React learn path

    React learn path The Road to learn React https://github.com/the-road-to-learn-react https://roadtore ...

  2. Ajax 響應

    獲取服務器的響應內容,可以使用responseText或者responseXML屬性 responseText:獲取字符串形式的相應內容,除了XML的響應內容以外可用 responseXML:獲取XM ...

  3. CNN tricks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) http://lamda.nju.edu.cn/weixs/projec ...

  4. jenkins--svn+Email自动触发2(jenkins系统配置)

    jenkins系统配置-SonarQube servers配置: 邮件通知设置: 邮件调试问题: 在 系统设置 --> Extended E-mail Notification: 找到 Enab ...

  5. BZOJ3732Network——kruskal重构树+倍增+LCA/最小生成树+倍增

    题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...

  6. BZOJ2212 POI2011Tree Rotations(线段树合并)

    显然子树内的操作不会对子树外产生影响.于是贪心,若交换之后子树内逆序对减少就交换. 这个东西可以用权值线段树计算.操作完毕后需要对两棵权值线段树合并,这个的复杂度是两棵线段树的重复节点个数.那么总复杂 ...

  7. Sql 重置自动增长列

    Sql 重置自动增长列: dbcc checkident(表名, reseed, 0) 使用的情况,一般出现在主外键关联表,导致无法 truncate 只能delete的情况. 此时我们可能会需要重置 ...

  8. 自学Linux Shell13.1-命令行参数

    点击返回 自学Linux命令行与Shell脚本之路 Bash shell提供了一些不同的方法来从用户处获得数据,包括以下3中方法: 命令行参数(添加在名利后面的数据) 命令行选项(可修改命令行为的单个 ...

  9. 自学Aruba5.2-Aruba安全认证-有PEFNG 许可证环境的角色策略管理

    点击返回:自学Aruba之路 自学Aruba5.2-Aruba安全认证- 有PEFNG 许可证环境的角色策略管理 导入许可后,可以对Role进行配置: 1. 系统自带的Role的可以修改的属性: 2. ...

  10. Android 设置Activity样式 透明度

    一.设置Activity透明度有几种方法:1>.在清单文件中配置Activity时声明android:theme="@android:style/Theme.Translucent&q ...