51nod1222 最小公倍数计数
输入数据包括2个数:a, b,中间用空格分隔(1 <= a <= b <= 10^11)。
输出最小公倍数在这个区间的不同二元组的数量。
4 6
10
数学问题 莫比乌斯反演
请开始你的反演!
设:
$$ans(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
那么 $ans(b)-ans(a-1)$ 就是最终答案
尝试化简上面的式子:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} [\frac{i*j}{gcd(i,j)}<=n]$$
$$\sum_{d=1}^{n} \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*j<=\frac{n}{d}] [gcd(i,j)==1]$$
$$\sum_{d=1}^{n} \sum_{k=1}^{\frac{n}{d}} \mu(k) \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [i*k*j*k<=\frac{n}{d}] $$
$$\sum_{k=1}^{n} \mu(k) \sum_{d=1}^{\frac{n}{k}} \sum_{i=1}^{\frac{n}{dk}} \sum_{j=1}^{\frac{n}{dk}} [i*j*d<=\frac{n}{k^2}] $$
显然d和k值大到一定程度,最后面就是0了,所以我们可以缩小求和上界:
$$\sum_{k=1}^{\sqrt n} \mu(k) \sum_{d=1}^{\frac{n}{k^2}} \sum_{i=1}^{\frac{n}{dk^2}} \sum_{j=1}^{\frac{n}{dk^2}} [i*j*d<=\frac{n}{k^2}] $$
这个范围很友好,我们可以枚举$\mu(k)$,求满足条件的i j d三元组数量。
需要求的三元组是无序的,为了不重不漏地计数,我们可以分别求出有序(单调上升)的三元组数量,对于其中三个数各不同的、有两个数相同的、三个数都相同的分别计数,然后乘以对应的组合数即可。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
int pri[mxn],mu[mxn],cnt=;
bool vis[mxn];
void init(){
mu[]=;
for(int i=;i<mxn;i++){
if(!vis[i]){
pri[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt && pri[j]*i<mxn;j++){
vis[pri[j]*i]=;
if(i%pri[j]==){mu[pri[j]*i]=;break;}
mu[pri[j]*i]=-mu[i];
}
}
return;
}
LL calc(LL n){
if(!n)return ;
LL i,j,k,ed=floor(sqrt(n));
LL res=,tmp=;
for(k=;k<=ed;k++){
if(mu[k]){
tmp=;
LL ED=n/(k*k);
for(i=;i*i*i<=ED;i++){
for(j=i+;j*j*i<=ED;j++)
tmp+=(ED/(i*j)-j)*+;
tmp+=(ED/(i*i)-i)*;
tmp++;
}
res+=mu[k]*tmp;
}
}
return (res+n)/;
}
LL a,b;
int main(){
init();
scanf("%lld%lld",&a,&b);
printf("%lld\n",calc(b)-calc(a-));
return ;
}
51nod1222 最小公倍数计数的更多相关文章
- 51Nod1222 最小公倍数计数 数论 Min_25 筛
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1222.html 题意 给定 $a,b$, 求 $$\sum_{n=a}^b \sum_{i=1}^n ...
- 51nod1222最小公倍数计数
51nod1222 http://210.33.19.103/contest/1113/problem/2 同学的神仙做法: 首先考虑先去掉X<=Y的限制,也就是先计算满足要求的任意有序pair ...
- 51nod1222 最小公倍数计数 莫比乌斯反演 数学
求$\sum_{i = 1}^{n} \sum_{j = 1}^{i} [lcm(i, j) \le n]$因为这样不好求,我们改成求$\sum_{i = 1}^{n} \sum_{j = 1}^{n ...
- [51nod1222] 最小公倍数计数(莫比乌斯反演)
题面 传送门 题解 我此生可能注定要和反演过不去了--死都看不出来为啥它会突然繁衍反演起来啊-- 设\(f(n)=\sum_{i=1}^n\sum_{j=1}^n[{ij\over\gcd(i,j)} ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)
题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑bi=1∑kj ...
- 【51Nod 1222】最小公倍数计数
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去 ...
- 51nod 1222 最小公倍数计数【莫比乌斯反演】
参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...
随机推荐
- python之tkinter使用举例-Button
tkinter用于编写GUI界面,python3默认已经包含,直接使用. # GUI:tkinter使用举例 import tkinter # 实例化tkinter对象 top = tkinter.T ...
- Java MD5Util
package util; import java.security.MessageDigest; public class MD5Util { public static String strin ...
- C# region指令和控制台清零
region指令 有的时候,为了完成一个需求,可能会写几十行.几百行.甚至几千行代码. 当代码数量非常多的时候,尽管你可以使用很详细的注释来帮助阅读,但也不太容易分清楚哪些代码在干什么事情. 因此,C ...
- 优步加入Linux基金会:支持开源
导读 当地时间11月16日,优步在Uber Open Summit 2018年度峰会上宣布加入Linux基金会,并作为金级会员坚定支持对开源工具的使用和贡献. 优步CEO Thuan Pham将Lin ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- 【比赛】NOIP2018 总结
一.考试过程 Day1: 先看了一遍题目,得到的结论是没有题是直接秒掉的,然后一道一道认真看. 看T1的时候开始并没想起来有一道原题,只是脑海中有一个印象,好像求差分和可以.然后自测了一下小样例,发现 ...
- Leetcode 20.有效的括号 By Python
给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空字符串可被认 ...
- WinRM不起作用 Connecting to remote server failed with the following error message : WinRM cannot complete the operation
当我运行下面的 powershell 脚本时: $FarmAcct = 'domain\user' $secPassword = ConvertTo-SecureString 'aaa' -AsP ...
- CF710F String Set Queries
CF710F String Set Queries 支持字符串的插入和删除...SAM也干不了这个事 所以可以用cdq分治+AC自动机O(nlogn)解决 但是本题强制在线~~~ 我们还有一个工具,叫 ...
- 【洛谷P4735】最大异或和
题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...