Docker:Deploy your app
Prerequisites
- Install Docker.
- Get Docker Compose as described in Part 3 prerequisites.
- Get Docker Machine as described in Part 4 prerequisites.
- Read the orientation in Part 1.
Learn how to create containers in Part 2.
Make sure you have published the
friendlyhello
image you created by pushing it to a registry. We use that shared image here.Be sure your image works as a deployed container. Run this command, slotting in your info for
username
,repo
, andtag
:docker run -p 80:80 username/repo:tag
, then visithttp://localhost/
.- Have the final version of
docker-compose.yml
from Part 5 handy.
Introduction
You’ve been editing the same Compose file for this entire tutorial. Well, we have good news.
That Compose file works just as well in production as it does on your machine.
Here, We go through some options for running your Dockerized application.
Choose an option
If you’re okay with using Docker Community Edition in production, you can use Docker Cloud to help manage your app on popular service providers such as Amazon Web Services, DigitalOcean, and Microsoft Azure.
To set up and deploy:
- Connect Docker Cloud with your preferred provider, granting Docker Cloud permission to automatically provision and “Dockerize” VMs for you.
- Use Docker Cloud to create your computing resources and create your swarm.
- Deploy your app.
Note: We do not link into the Docker Cloud documentation here; be sure to come back to this page after completing each step.
Connect Docker Cloud
You can run Docker Cloud in standard mode or in Swarm mode.
If you are running Docker Cloud in standard mode, follow instructions below to link your service provider to Docker Cloud.
- Amazon Web Services setup guide
- DigitalOcean setup guide
- Microsoft Azure setup guide
- Packet setup guide
- SoftLayer setup guide
- Use the Docker Cloud Agent to bring your own host
If you are running in Swarm mode (recommended for Amazon Web Services or Microsoft Azure), then skip to the next section on how to create your swarm.
Create your swarm
Ready to create a swarm?
If you’re on Amazon Web Services (AWS) you can automatically create a swarm on AWS.
If you are on Microsoft Azure, you can automatically create a swarm on Azure.
Otherwise, create your nodes in the Docker Cloud UI, and run the
docker swarm init
anddocker swarm join
commands you learned in part 4 over SSH via Docker Cloud. Finally, enable Swarm Mode by clicking the toggle at the top of the screen, and register the swarm you just created.
Note: If you are Using the Docker Cloud Agent to Bring your Own Host, this provider does not support swarm mode. You can register your own existing swarms with Docker Cloud.
Deploy your app on a cloud provider
- Connect to your swarm via Docker Cloud. There are a couple of different ways to connect:
- From the Docker Cloud web interface in Swarm mode, select Swarms at the top of the page, click the swarm you want to connect to, and copy-paste the given command into a command line terminal.
Or ...
- On Docker for Mac or Docker for Windows, you can connect to your swarms directly through the desktop app menus.
Either way, this opens a terminal whose context is your local machine, but whose Docker commands are routed up to the swarm running on your cloud service provider. You directly access both your local file system and your remote swarm, enabling pure docker
commands.
- Run
docker stack deploy -c docker-compose.yml getstartedlab
to deploy the app on the cloud hosted swarm.
docker stack deploy -c docker-compose.yml getstartedlab Creating network getstartedlab_webnet
Creating service getstartedlab_web
Creating service getstartedlab_visualizer
Creating service getstartedlab_redis
Run some swarm commands to verify the deployment
You can use the swarm command line, as you’ve done already, to browse and manage the swarm.
Here are some examples that should look familiar by now:
Use
docker node ls
to list the nodes.
[getstartedlab] ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9442yi1zie2l34lj01frj3lsn ip-172-31-5-208.us-west-1.compute.internal Ready Active
jr02vg153pfx6jr0j66624e8a ip-172-31-6-237.us-west-1.compute.internal Ready Active
thpgwmoz3qefdvfzp7d9wzfvi ip-172-31-18-121.us-west-1.compute.internal Ready Active
n2bsny0r2b8fey6013kwnom3m * ip-172-31-20-217.us-west-1.compute.internal Ready Active Leader
- Use
docker service ls
to list services.
[getstartedlab] ~/sandbox/getstart $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
x3jyx6uukog9 dockercloud-server-proxy global 1/1 dockercloud/server-proxy *:2376->2376/tcp
ioipby1vcxzm getstartedlab_redis replicated 0/1 redis:latest *:6379->6379/tcp
u5cxv7ppv5o0 getstartedlab_visualizer replicated 0/1 dockersamples/visualizer:stable *:8080->8080/tcp
vy7n2piyqrtr getstartedlab_web replicated 5/5 sam/getstarted:part6 *:80->80/tcp
- Use
docker service ps <service>
to view tasks for a service.
[getstartedlab] ~/sandbox/getstart $ docker service ps vy7n2piyqrtr
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
qrcd4a9lvjel getstartedlab_web.1 sam/getstarted:part6 ip-172-31-5-208.us-west-1.compute.internal Running Running 20 seconds ago
sknya8t4m51u getstartedlab_web.2 sam/getstarted:part6 ip-172-31-6-237.us-west-1.compute.internal Running Running 17 seconds ago
ia730lfnrslg getstartedlab_web.3 sam/getstarted:part6 ip-172-31-20-217.us-west-1.compute.internal Running Running 21 seconds ago
1edaa97h9u4k getstartedlab_web.4 sam/getstarted:part6 ip-172-31-18-121.us-west-1.compute.internal Running Running 21 seconds ago
uh64ez6ahuew getstartedlab_web.5 sam/getstarted:part6 ip-172-31-18-121.us-west-1.compute.internal Running Running 22 seconds ago
Open ports to services on cloud provider machines
At this point, your app is deployed as a swarm on your cloud provider servers, as evidenced by the docker
commands you just ran.
But, you still need to open ports on your cloud servers in order to:
allow communication between the
redis
service andweb
service on the worker nodesallow inbound traffic to the
web
service on the worker nodes so that Hello World service and Visualizer service are accessible from a web browser.allow inbound SSH traffic on the server that is running the
manager
(this may be already set on your cloud provider)
These are the ports you need to expose for each service:
Service | Type | Protocol | Port |
---|---|---|---|
web |
HTTP | TCP | 80 |
visualizer |
HTTP | TCP | 8080 |
redis |
TCP | TCP | 6379 |
Methods for doing this vary depending on your cloud provider.
We use Amazon Web Services (AWS) as an example.
What about the redis service to persist data?
To get the
redis
service working, you need tossh
into the cloud server where themanager
is running, and make adata/
directory in/home/docker/
before you rundocker stack deploy
.Another option is to change the data path in the
docker-stack.yml
to a pre-existing path on themanager
server. This example does not include this step, so theredis
service is not up in the example output.
Example: AWS
Log in to the AWS Console, go to the EC2 Dashboard, and click into your Running Instances to view the nodes.
On the left menu, go to Network & Security > Security Groups.
See the security groups related to your swarm for
getstartedlab-Manager-<xxx>
,getstartedlab-Nodes-<xxx>
, andgetstartedlab-SwarmWide-<xxx>
.Select the “Node” security group for the swarm. The group name is something like this:
getstartedlab-NodeVpcSG-9HV9SMHDZT8C
.Add Inbound rules for the
web
,visualizer
, andredis
services, setting the Type, Protocol and Port for each as shown in the table above, and click Save to apply the rules.
Tip: When you save the new rules, HTTP and TCP ports are auto-created for both IPv4 and IPv6 style addresses.
- Go to the list of Running Instances, get the public DNS name for one of the workers, and paste it into the address bar of your web browser.
Just as in the previous parts of the tutorial, the Hello World app service displays on port 80
, and the Visualizer service displays on port 8080
.
Iteration and cleanup
From here you can do everything you learned about in previous parts of the tutorial.
Scale the app by changing the
docker-compose.yml
file and redeploy on-the-fly with thedocker stack deploy
command.Change the app behavior by editing code, then rebuild, and push the new image. (To do this, follow the same steps you took earlier to build the app and publish the image).
You can tear down the stack with
docker stack rm
. For example:docker stack rm getstartedlab
Unlike the scenario where you were running the swarm on local Docker machine VMs, your swarm and any apps deployed on it continue to run on cloud servers regardless of whether you shut down your local host.
Congratulations!
You’ve taken a full-stack, dev-to-deploy tour of the entire Docker platform.
There is much more to the Docker platform than what was covered here, but you have a good idea of the basics of containers, images, services, swarms, stacks, scaling, load-balancing, volumes, and placement constraints.
Want to go deeper? Here are some resources we recommend:
- Samples: Our samples include multiple examples of popular software running in containers, and some good labs that teach best practices.
- User Guide: The user guide has several examples that explain networking and storage in greater depth than was covered here.
- Admin Guide: Covers how to manage a Dockerized production environment.
- Training: Official Docker courses that offer in-person instruction and virtual classroom environments.
- Blog: Covers what’s going on with Docker lately.
Docker:Deploy your app的更多相关文章
- Docker5之Deploy your app
Make sure you have published the friendlyhello image you created by pushing it to a registry. We’ll ...
- 第二十一章:deploy and live updates
通常我们开发一个app之后,需要把他们放到对应的应用商店上去以供下载.在此期间,需要经过应用商店的审核,包括初次上传和更新上传.短则需要数天,多则需要几个星期,这对于我们的快速产品迭代和hotfix来 ...
- 老司机实战Windows Server Docker:2 docker化现有iis应用的正确姿势
前言 上一篇老司机实战Windows Server Docker:1 初体验之各种填坑介绍了安装docker服务过程中的一些小坑.这一篇,我们来填一些稍大一些的坑:如何docker化一个现有的iis应 ...
- 【09】循序渐进学 docker:docker swarm
写在前面的话 至此,docker 的基础知识已经了解的差不多了,接下来就来谈谈对于 docker 容器,我们如何来管理它. docker swarm 在学习 docker swarm 之前,得先知道容 ...
- docker:Dockerfile构建LNMP平台
docker:Dockerfile构建LNMP平台 1.dockerfile介绍 Dockerfile是Docker用来构建镜像的文本文件,包含自定义的指令和格式.可以通过docker buil ...
- Docker:Stacks
Prerequisites Install Docker version 1.13 or higher. Get Docker Compose as described in Part 3 prere ...
- Docker:Swarms
Prerequisites Install Docker version 1.13 or higher. Get Docker Compose as described in Part 3 prere ...
- Docker:Service
Prerequisites Install Docker version 1.13 or higher. Get Docker Compose. On Docker for Mac and Docke ...
- Docker: 如何将node.js的项目部署到docker的swarm上面去
前提条件: Docker创建虚机和swarm 如何用Docker建立一个Node.js的开发环境 正文: 将如何用Docker建立一个Node.js的开发环境文中创建的nodehello image发 ...
随机推荐
- 20155228 实验三 敏捷开发与XP实践
20155228 实验三 敏捷开发与XP实践 实验内容 1. XP基础 2. XP核心实践 3. 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)>& ...
- Java WEB 笔记
1. 部署并启动 tomcat 服务器 1). 解压 apache-tomcat-version 到一个非中文目录下 2). 配置一个环境变量,JAVA_HOME(指向 JDK 安装目录)或 JRE_ ...
- spring boot: ConfigurationProperties
读取配置信息 1.5 之前 @Component @ConfigurationProperties(prefix = "user", locations= {"class ...
- linux常用命令:nl 命令
nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容自动的加上行号!其默认的结果与 cat -n 有点不太一样, nl 可以将行号做比较多的显示设计,包括位数与是否自动补齐 0 等 ...
- C# 选项卡控件
选项卡控件,它提供一系列操作按钮,单击不同的按钮可以在各个页面之间进行切换. 在Windows Form应用程序中,选项卡控件即“TebPage”控件,它公开“TebPage”属性,表示一个由“Tab ...
- golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息
golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放 ...
- scala语言中的case关键字在spark中的一个奇特使用
package com.spark.demo import com.spark.demo.util.SparkUtil import org.apache.spark.rdd.RDD import s ...
- TF-IDF基本原理
1.TF-IDF介绍 TF/IDF(term frequency–inverse document frequency)用以评估字词 对于一个文件集其中一份文件的重要程度.字词的重要性随着它在文件中出 ...
- logger日志模块
简单配合模式: import logging#简单配置logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s ...
- 今日总结(linux和plsql)
#case ...when语句(根据字段不同值显示不同结果) ##1)case ...when语句的使用方法一: 语法格式: case column_name when value1 then res ...