本文转自:https://github.com/zhangqianhui/AdversarialNetsPapers

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it)

Unclassified

✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)

✅ [Adversarial Autoencoders] [Paper][Code]

✅ [Generating images with recurrent adversarial networks] [Paper][Code]

✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper]

✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

✅ [Learning What and Where to Draw] [Paper][Code]

✅ [Adversarial Training for Sketch Retrieval] [Paper]

✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)

✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

Image Inpainting

✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]

✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

Super-Resolution

✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

Disocclusion

✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)

Object Detection

✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)

RNN

✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

✅ [Conditional Generative Adversarial Nets] [Paper][Code]

✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]

✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

✅ [Pixel-Level Domain Transfer] [Paper][Code]

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)

✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow's paper)

✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis && style transfer

✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

GAN Theory

✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)

✅ [Mode RegularizedGenerative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

✅ [Sampling Generative Networks] [Paper][Code]

✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio's paper)

✅ [How to train Gans] [Docu]

3D

✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

Face Generative

✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

Adversarial Examples

✅ [Intriguing properties of neural networks] [Paper]

✅ [Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images] [Paper]

✅ [Explaining and Harnessing Adversarial Examples] [Paper]

✅ [Adversarial examples in the physical world] [Paper]

✅ [Universal adversarial perturbations ] [Paper]

✅ [Robustness of classifiers: from adversarial to random noise ] [Paper]

✅ [DeepFool: a simple and accurate method to fool deep neural networks] [Paper]

✅ [2] [PDF] (NIPS Goodfellow Slides)

Project

✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

✅ [1] http://www.inference.vc/

✅ [2] http://distill.pub/2016/deconv-checkerboard/

Other

✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

✅ [2] [PDF](NIPS Lecun Slides)

 

(转) AdversarialNetsPapers的更多相关文章

  1. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  2. 学习笔记GAN002:DCGAN

    Ian J. Goodfellow 论文:https://arxiv.org/abs/1406.2661 两个网络:G(Generator),生成网络,接收随机噪声Z,通过噪声生成样本,G(z).D( ...

  3. DCGAN in Tensorflow生成动漫人物

    引自:GAN学习指南:从原理入门到制作生成Demo 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文 ...

  4. CycleGAN 各种变变变

    转载自 简单介绍了一下GAN和DCGAN的原理.以及如何使用Tensorflow做一个简单的生成图片的demo. Ian Goodfellow对GAN一系列工作总结的ppt,确实精彩,推荐:独家 | ...

  5. 生成对抗式网络 GAN的理解

    转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码, ...

  6. 预测学习、深度生成式模型、DcGAN、应用案例、相关paper

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  7. GAN学习指南:从原理入门到制作生成Demo,总共分几步?

    来源:https://www.leiphone.com/news/201701/yZvIqK8VbxoYejLl.html?viewType=weixin 导语:本文介绍下GAN和DCGAN的原理,以 ...

  8. 生成对抗网络资源 Adversarial Nets Papers

    来源:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers ...

随机推荐

  1. Java基础(basis)-----抽象类和接口详解

    1.抽象类 1.1 abstract修饰类:抽象类 不可被实例化 抽象类有构造器 (凡是类都有构造器) 抽象方法所在的类,一定是抽象类 抽象类中可以没有抽象方法 1.2 abstract修饰方法:抽象 ...

  2. LoadLibrary加载动态库失败

    [1]LoadLibrary加载动态库失败的可能原因以及解决方案: (1)dll动态库文件路径不对.此场景细分为以下几种情况: 1.1 文件路径的确错误.比如:本来欲加载的是A文件夹下的动态库a.dl ...

  3. for-each 循环原理

    for-each 循环原理1,for-each 是在java5 之后出现的.for是java 上的一个关键字,在jdk 找不到任何for的底层实现的.是因为for的底层实现被封装到了编译器中.所以通过 ...

  4. python XML文件解析:用xml.dom.minidom来解析xml文件

    python解析XML常见的有三种方法: 一是xml.dom.*模块,是W3C DOM API的实现,若需要处理DOM API则该模块很合适, 二是xml.sax.*模块,它是SAX API的实现,这 ...

  5. EasyUi通过POI 实现导出xls表格功能

    Spring +EasyUi+Spring Jpa(持久层) EasyUi通过POI 实现导出xls表格功能 EasyUi界面: 点击导出按钮实现数据导入到xls表格中 第一步:修改按钮事件: @Co ...

  6. Hadoop HA方案调研

    原文成文于去年(2012.7.30),已然过去了一年,很多信息也许已经过时,不保证正确,与Hadoop学习笔记系列一样仅为留做提醒. ----- 针对现有的所有Hadoop HA方案进行调研,以时间为 ...

  7. iframe有那些缺点

    1.页面样式调试麻烦,出现多个滚动条: 2.浏览器的后退按钮失效: 3.过多会增加服务器的HTTP请求: 4.小型的移动设备无法完全显示框架: 5.产生多个页面,不易管理: 6.不容易打印: 7.代码 ...

  8. B/S开发介绍

    b/s 的优势: 1.开发成本低 2.管理维护简单 3.产品升级便利 4.对用户的培训费用低 5.用户使用方便,出现故障的概率小 b/s 的不足: 1.安全性不足 2.客户端不能随心变化,受浏览器限制

  9. 分享30道Redis面试题,面试官能问到的我都找到了

    1.什么是Redis?简述它的优缺点? Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到 ...

  10. Python进阶【第三篇】Python中的基本数据类型

    一.运算符 1.算术运算 2.比较运算 3.赋值运算 4.逻辑运算 5.成员运算 二.基本数据类型 1.数字 int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1 ...