(转) AdversarialNetsPapers
AdversarialNetsPapers
The classical Papers about adversarial nets
The First paper
✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it)
Unclassified
✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]
✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)
✅ [Adversarial Autoencoders] [Paper][Code]
✅ [Generating images with recurrent adversarial networks] [Paper][Code]
✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]
✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper]
✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]
✅ [Learning What and Where to Draw] [Paper][Code]
✅ [Adversarial Training for Sketch Retrieval] [Paper]
✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]
✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)
✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)
✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)
✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)
✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]
✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]
Image Inpainting
✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]
✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]
Super-Resolution
✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)
Disocclusion
✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]
Semantic Segmentation
✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)
Object Detection
✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)
RNN
✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]
Conditional adversarial
✅ [Conditional Generative Adversarial Nets] [Paper][Code]
✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]
✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]
✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)
✅ [Pixel-Level Domain Transfer] [Paper][Code]
✅ [Invertible Conditional GANs for image editing] [Paper][Code]
✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]
✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]
Video Prediction
✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)
✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow's paper)
✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]
Texture Synthesis && style transfer
✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)
GAN Theory
✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)
✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)
✅ [Mode RegularizedGenerative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)
✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)
✅ [Sampling Generative Networks] [Paper][Code]
✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio's paper)
✅ [How to train Gans] [Docu]
3D
✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)
Face Generative
✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]
✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)
Adversarial Examples
✅ [Intriguing properties of neural networks] [Paper]
✅ [Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images] [Paper]
✅ [Explaining and Harnessing Adversarial Examples] [Paper]
✅ [Adversarial examples in the physical world] [Paper]
✅ [Universal adversarial perturbations ] [Paper]
✅ [Robustness of classifiers: from adversarial to random noise ] [Paper]
✅ [DeepFool: a simple and accurate method to fool deep neural networks] [Paper]
✅ [2] [PDF] (NIPS Goodfellow Slides)
Project
✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)
✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)
✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)
Blogs
✅ [1] http://www.inference.vc/
✅ [2] http://distill.pub/2016/deconv-checkerboard/
Other
✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]
✅ [2] [PDF](NIPS Lecun Slides)
(转) AdversarialNetsPapers的更多相关文章
- GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- 学习笔记GAN002:DCGAN
Ian J. Goodfellow 论文:https://arxiv.org/abs/1406.2661 两个网络:G(Generator),生成网络,接收随机噪声Z,通过噪声生成样本,G(z).D( ...
- DCGAN in Tensorflow生成动漫人物
引自:GAN学习指南:从原理入门到制作生成Demo 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文 ...
- CycleGAN 各种变变变
转载自 简单介绍了一下GAN和DCGAN的原理.以及如何使用Tensorflow做一个简单的生成图片的demo. Ian Goodfellow对GAN一系列工作总结的ppt,确实精彩,推荐:独家 | ...
- 生成对抗式网络 GAN的理解
转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码, ...
- 预测学习、深度生成式模型、DcGAN、应用案例、相关paper
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- GAN学习指南:从原理入门到制作生成Demo,总共分几步?
来源:https://www.leiphone.com/news/201701/yZvIqK8VbxoYejLl.html?viewType=weixin 导语:本文介绍下GAN和DCGAN的原理,以 ...
- 生成对抗网络资源 Adversarial Nets Papers
来源:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers ...
随机推荐
- Keras中使用LSTM层时设置的units参数是什么
https://www.zhihu.com/question/64470274 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ ht ...
- sitecore系统教程之媒体库
您可以管理媒体库中的所有媒体项目,例如要嵌入网页的图像或供访问者下载的图像.媒体库包含所有媒体项目,例如图像,文档,视频和音频文件. 在媒体库中,您可以: 将所有媒体文件保存在一个位置,并将其组织在与 ...
- Java基础(basis)-----异常与错误处理
1.编译型异常和运行时异常 编译时异常是指程序正确 而由外界条件不满足而产生的异常 java 中要求必须去捕捉住这类异常 不然无法通过编译 运行时异常是指程序存在着bug 如空指针异常 数 ...
- 大数据处理框架之Strom:认识storm
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...
- flask渲染模板时报错TypeError: 'UnboundField' object is not callable
渲染模板时,访问页面提示TypeError: 'UnboundField' object is not callable 检查代码,发现实例化表单类是,没有加括号:form = NewNoteForm ...
- highchart应用示例1--2个不同类型变量2个y轴
1.ajax调用接口和处理数据 function getCityData() { var date1 = $('#datetimepicker1').val(); var date2 = $('#da ...
- postgresql查询语句
//查询表名称SELECT tablename FROM pg_tablesWHERE tablename NOT LIKE 'pg%'AND tablename NOT LIKE 'sql_%' O ...
- vivado 连接不上板子 There is no current hw_target
前情提要: vivado连接板子点击auto connect报错 [Labtoolstcl 44-469] There is no current hw_target. 处理步骤: 首先排除硬件问题, ...
- kivy中size和pos的使用
kivy中位置和大小属性的使用: -------------------位置---------------------------- 1.pos_hint(‘x-axis-key’:value,’y- ...
- jQuery的基本过滤器与jQuery实现隔行换色实例
没加过滤器之前: 加过滤器之后: 总的代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8& ...