<题目链接>

题目大意:

Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.

解题分析:

其实只要看懂题目就会发现这道题是欧拉函数的模板题,即求小于n且与n互质的数的个数。

欧拉函数的基本性质: >>>

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; //直接求解欧拉函数
int euler(int n){
int res=n,a=n;
for(int i=;i*i<=a;i++){
if(a%i==){
res=res/i*(i-);//先进行除法是为了防止中间数据的溢出
while(a%i==) a/=i;
}
}
if(a>) res=res/a*(a-);
return res;
} /*
//筛选法打欧拉函数表
#define Max 1000001
int euler[Max];
void Init(){
euler[1]=1;
for(int i=2;i<Max;i++)
euler[i]=i;
for(int i=2;i<Max;i++)
if(euler[i]==i)
for(int j=i;j<Max;j+=i)
euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
}
*/ int main()
{
int n;
while(scanf("%d",&n)!=EOF,n)
{
printf("%d\n",euler(n));
}
return ;
}

2018-07-30

POJ 2407 Relatives【欧拉函数】的更多相关文章

  1. POJ 2407 Relatives(欧拉函数)

    题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...

  2. POJ 2407 Relatives 欧拉函数题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  3. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  4. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  5. poj2407 Relatives 欧拉函数基本应用

    题意很简单 就是欧拉函数的定义: 欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) .题目求的就是φ(n) 根据 通式:φ(x)=x*(1-1/p1)*(1-1/ ...

  6. POJ2407–Relatives(欧拉函数)

    题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> # ...

  7. poj 2773 利用欧拉函数求互质数

    题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为  (a1,a2,a3.......a(p ...

  8. poj 2480 (欧拉函数应用)

    点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n ...

  9. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

  10. POJ 2407 Relatives(欧拉函数)

    http://poj.org/problem?id=2407 题意: 给出一个n,求小于等于的n的数中与n互质的数有几个. 思路: 欧拉函数的作用就是用来求这个的. #include<iostr ...

随机推荐

  1. POJ1287 Networking【最小生成树】

    题意: 给出n个节点,再有m条边,这m条边代表从a节点到b节点电缆的长度,现在要你将所有节点都连起来,并且使长度最小 思路: 这是个标准的最小生成树的问题,用prim的时候需要注意的是他有重边,取边最 ...

  2. linux 链接理解

    1.软链接 只包含另外软链接的基本信息, 生成与源文件不同的节点号, 可以链接目录.不同网络的文件 2.硬链接只能链接文件,不会生成节点号,说白了就是指针,指向同个文件,所以链接的节点号与源节点号一致

  3. ubuntu + usb转RS232驱动

    1. 购买USB转串RS232/485/422 如果你的电脑有串口的话,就不用买啦,我的台式机有串口,把USB转串的线插上之后,unbuntu就不支持了.(自己有嘛) 就是输入  ls /dev/tt ...

  4. javascript随笔和常见的知识点

    1.js中循环中用 return只能停止循环,不能停止到函数的定义部分.所以下面的返回值为1 return 100没有意义,只起到终止循环的目的 function bb() { var sum = 0 ...

  5. Python基础-封装与扩展、静态方法和类方法

    一.封装与扩展 封装在于明确区分内外,使得类实现者可以修改封装内的东西而不影响外部调用者的代码:而外部使用者只知道一个接口(函数),只要接口(函数)名.参数不变,使用者的代码永远无需改变.这就提供一个 ...

  6. Kaggle 泰坦尼克

    入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据 ...

  7. setfacl报错Operation not supported

    对文件目录setfacl权限设置时报错Operation not supported Google一下,发现是分区acl权限问题 一般情况下(ext4),默认acl支持都是加载的.但如果遇到二般情况, ...

  8. Json对象和字符串互相转换 数据拼接 JSON使用方式

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 一.JSON字符串转换为JSON对象: eval() 和 JSON.parse eg- json字符串: ...

  9. elasticsearch5.0集群大数据量迁移方法及注意事项

    当es集群的数据量较小的情况下elasticdump这个工具比较方便,但是当数据量达到一定级别比如上百G的时候,elasticdump速度就很慢了,此时我们可以使用快照的方法进行备份 elasticd ...

  10. 使用rpm包安装lamp环境

    前提: 是你的centos能联网,或者有本地的yum仓库 或者配置通过代理上网 vim /etc/yum.conf 加入如下内容 proxy=http://192.168.11.82:808 1.通过 ...