poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】
<题目链接>
题目大意:
给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离。
解题分析:
仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少。但是,这个最大半径,没有什么比较好的求法,于是,我们可以想到二分答案求半径。对于二分的半径,我们可以将该凸多边形的边界向内平移 r 的距离,然后再用半平面交法,用这些平移后的直线去切割原凸多边形,如果最终切得的区域不为空,则二分枚举更大的半径,反之减小枚举的半径。知道恰好围成的区域为空(或恰好不为空)为止。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std; const double eps = 1e-;
const double inf = 1e9;
const int MAXN = ;
int m;//保存多边形的点数
double r;//保存内移距离
int cCnt, curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数 struct point
{
double x, y;
};
point points[MAXN], p[MAXN], q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点 void getline(point x, point y, double &a, double &b, double &c) //两点x、y确定一条直线a、b、c为其系数
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
} void initial()
{
for (int i = ; i <= m; ++i)p[i] = points[i];
p[m + ] = p[];
p[] = p[m];
cCnt = m;
} point intersect(point x, point y, double a, double b, double c) //定比分点法,求两条直线的交点
{
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x = (x.x * v + y.x * u) / (u + v);
pt.y = (x.y * v + y.y * u) / (u + v);
return pt;
} void cut(double a, double b, double c) //利用半平面交求出切割后多边形的所有顶点
{
curCnt = ;
for (int i = ; i <= cCnt; ++i)
{
if (a*p[i].x + b * p[i].y + c >= )q[++curCnt] = p[i]; // c因为精度问题,可能会偏小。所以有些点本应在右側而没在。
else
{
if (a*p[i - ].x + b * p[i - ].y + c > )
{
q[++curCnt] = intersect(p[i], p[i - ], a, b, c);
}
if (a*p[i + ].x + b * p[i + ].y + c > )
{
q[++curCnt] = intersect(p[i], p[i + ], a, b, c);
}
}
} for (int i = ; i <= curCnt; ++i)p[i] = q[i];
p[curCnt + ] = q[];
p[] = p[curCnt];
cCnt = curCnt;
} int dcmp(double x) //控制精度
{
if (fabs(x)<eps) return ;
else return x< ? - : ;
} void solve()
{
initial(); //初始化存放多边形顶点的p数组 for (int i = ; i <= m; ++i) { point ta, tb, tt; //得到平移后的直线
tt.x = points[i + ].y - points[i].y;
tt.y = points[i].x - points[i + ].x;
double k = r / sqrt(tt.x * tt.x + tt.y * tt.y);
tt.x = tt.x * k;
tt.y = tt.y * k;
ta.x = points[i].x + tt.x;
ta.y = points[i].y + tt.y;
tb.x = points[i + ].x + tt.x;
tb.y = points[i + ].y + tt.y; double a, b, c; //接下来用这些平移后的直线去切割原多边形
getline(ta, tb, a, b, c);
cut(a, b, c);
}
} void Reverse() { //规整化方向,逆时针变顺时针,顺时针变逆时针
for (int i = ; i < (m + ) / ; i++)
swap(points[i], points[m - i]);
} int main()
{
while (scanf("%d", &m) != EOF) {
if (m == ) break;
for (int i = ; i <= m; i++)
scanf("%lf%lf", &points[i].x, &points[i].y);
Reverse(); //由于点的顺序是逆时针输入,所以要将它改成顺时针
points[m + ] = points[]; double left = , right = inf, mid;
while ((right - left) >= eps) { //二分求半径,eps控制二分的精度
mid = (left + right) / 2.0;
r = mid; //r为内切圆半径
solve();
if (cCnt <= ) right = mid; //如果将该多边形顶点向内平移r的距离后,半平面交所得多边形为空,则说明r过大,应当适当缩小
else left = mid;
}
printf("%.6f\n", left);
}
return ;
}
2018-08-03
poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】的更多相关文章
- poj 1474 Video Surveillance - 求多边形有没有核
/* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...
- POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)
题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- poj3675 求多边形与圆的面积交
题意:给出多边形的顶点坐标.圆的圆心坐标和半径,求面积交 sol:又是模板题啦= = 注意poj的C++好像认不出hypot函数,要稍微改写一下. hypot(double x,double y):即 ...
- poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7038 Accepted: 3242 Description ...
- POJ 1279 Art Gallery(半平面交求多边形核的面积)
题目链接 题意 : 求一个多边形的核的面积. 思路 : 半平面交求多边形的核,然后在求面积即可. #include <stdio.h> #include <string.h> ...
- POJ 3335 Rotating Scoreboard(半平面交求多边形核)
题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...
随机推荐
- HDU 2522 A simple problem (模拟)
题目链接 Problem Description Zty很痴迷数学问题..一天,yifenfei出了个数学题想难倒他,让他回答1 / n.但Zty却回答不了^_^. 请大家编程帮助他. Input 第 ...
- saltstack系列~第二篇
一 简介:今天咱们来继续学习saltstack 二 命名和分组 1 命名规则 1 ID构成 机房-DB类型-角色(主/从)-IP地址 2 分组构成 分为master slave两组即可 2 分组规则 ...
- python - str和repr方法:
# python 内置__str__()和__repr__()方法: #显示自定制 # 示例1 # a = 123 # print(a.__str__()) # 示例2 class Test(): d ...
- More Effective C++ 条款0,1
More Effective C++ 条款0,1 条款0 关于编译器 不同的编译器支持C++的特性能力不同.有些编译器不支持bool类型,此时可用 enum bool{false, true};枚举类 ...
- python去重(针对密码)
#coding:utf-8 #author:Blood_Zero import re tmp_list=[] f=open("E:/ASP.txt","r") ...
- mysql 索引无法使用问题
今天碰到一个问题,表中有一个索引不使用,怎么强制也没用 ,force index都没用, 后来才发现是类型不对, 比如索引字段是int,如果参数使用varchar,那么是无法使用索引的,参数类型最好统 ...
- Dubbo本地存根
在远程调用服务提供者的实现之前,如果需要做一些参数验证.缓存.判断.小功能等等,满足要求再调用服务提供者的远程服务,则我们可以通过编写一个本地存根来实现这种功能. (1).在公共项目中或服务消费者项目 ...
- C语言函数调用栈(三)
6 调用栈实例分析 本节通过代码实例分析函数调用过程中栈帧的布局.形成和消亡. 6.1 栈帧的布局 示例代码如下: //StackReg.c #include <stdio.h> //获取 ...
- 再谈:自定义结构体的对齐问题之__attribute__ ((packed))方法【转】
转自:https://blog.csdn.net/ipromiseu/article/details/5955295 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.c ...
- tomcat配置文件context.xml和server.xml分析
在tomcat 5.5之前Context体现在/conf/server.xml中的Host里的<Context>元素,它由Context接口定义.每个<Context元素代表了运行在 ...