题目传送:http://poj.org/problem?id=2409

Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

1
2
3
5
8
13
21

启发博客:http://blog.csdn.net/sr_19930829/article/details/38108871

polya定理看的我好累。。总算是在理解的基础上敲出一道裸题

关键就是在循环节个数和长度以及置换群个数的理解上

1.旋转。

环每次顺时针如果旋转i格,那么每循环lcm(n,i)个可以回到原来的状态。

每次旋转i个,所以循环节长度为lcm(n,i)/i。

由此推出循环节个数为n/(lcm(n,i)/i)即gcd(n,i)。

由polya定理可得染色方案为 ∑c^gcd(n,i) 其中 i=1,2,3,4,....n,置换群个数有n个

2.翻转。

这里得考虑两种情况,循环节长度为3,即珠子本身和翻转对应的那一颗。置换群个数有n个。

当n为奇数时,共有n个循环节个数为(n/2+1)的循环群,染色方案为 n*c^(n/2+1)

当n为偶数时,共有n个循环群,其中有n/2个的循环节个数为(n/2 +1), 有n/2个的循环节个数为(n/2)。 染色方案分别为 (n/2)*c^(n/2+1)以及(n/2)*c^(n/2)。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long quick_mod(long long a,long long b)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a);
b--;
}
b/=;
a=a*a;
}
return ans;
} int main()
{
int c,s;
long long res;
while(~scanf("%d%d",&c,&s)&&(c+s))
{
res=;
//翻转
for(int i=;i<=s;i++)
res+=quick_mod(c,gcd(s,i));
//旋转
if(s%!=)
res+=s*quick_mod(c,s/+);
else
res+=s/*quick_mod(c,s/+)+s/*quick_mod(c,s/);
res/=*s;
printf("%lld\n",res);
}
return ;
}

POJ 2409 Let it Bead(polya裸题)的更多相关文章

  1. POJ 2409 Let it Bead (Polya定理)

    题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...

  2. poj 2409 Let it Bead Polya计数

    旋转能够分为n种置换,相应的循环个数各自是gcd(n,i),个i=0时不动,有n个 翻转分为奇偶讨论,奇数时有n种置换,每种有n/2+1个 偶数时有n种置换,一半是n/2+1个,一半是n/2个 啃论文 ...

  3. [ACM] POJ 2409 Let it Bead (Polya计数)

    参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...

  4. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  5. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

  6. POJ 3624 Charm Bracelet(01背包裸题)

    Charm Bracelet Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38909   Accepted: 16862 ...

  7. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  8. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  9. POJ 2409 Let it Bead ——Burnside引理

    [题目分析] 裸题直接做. 一个长度为n,颜色为m的环,本质不同的染色方案是多少. 数据范围比较小,直接做就好了. [代码] #include <cstdio> #include < ...

随机推荐

  1. ubuntu 安装国际qq

    下载地址::http://pan.baidu.com/s/1nt1Nu6P 解压后,输入终端:suao dpkg -i 解压的文件名称.deb 如果你前面安装过qq,你可以输入sudo dpkg -P ...

  2. UI基础四:简单的assign block

    经常会有需求让在标准的order加个assign block,那就来简单说一下: 1.创建assign block组件ZXXXXXX 2.添加BTORDER节点和GUID属性 3.创建表视图(可配置, ...

  3. Object对象的浅拷贝与深拷贝方法详解

    /* ===================== 直接看代码 ===================== */ <!DOCTYPE html> <html> <head& ...

  4. ONVIF协议学习笔记

    一.理解 1.1 技术理解 ONVIF = 服务端 + 客户端 =(Web Services + RTSP)+ 客户端 = ((WSDL + SOAP) + RTSP) + 客户端 WSDL是服务端用 ...

  5. Java 类名.class与类名.this 的区别?

    “类名.this”的语法在Java语言中叫做“qualified this”.相关规定在这里:Chapter 15. Expressions - Qualified this这个语法的主要用途是:在内 ...

  6. python(6)之文件

    一.读写文件 以追加文件内容(a).读(r).写(w),读写(r+)的形式打开文件: f = open('yesterday','a',encoding='utf-8')#文件句柄 #输出一行文件内容 ...

  7. 使用javassist进行动态编程

    今天在研究dubbo时,发现一个新的知识点,可以使用javassist包进行动态编程,hibernate也使用该包进行编程.晚上百度了很多资料,将它的特性以代码的形式展现出来. package com ...

  8. 线性回归之决定系数(coefficient of determination)

    1. Sum Of Squares Due To Error 对于第i个观察点, 真实数据的Yi与估算出来的Yi-head的之间的差称为第i个residual, SSE 就是所有观察点的residua ...

  9. windows 文本操作

    type命令 作用:显示文件类文件内容 (例如:.txt .Java .cpp .c .html 等属于文本类文件 .word excel ppt exe dll 等都不属于文本类文件) fc命令 作 ...

  10. Win10系列:VC++绘制位图图片

    在使用Direct2D绘制图片的过程中,通过IWICImagingFactory工厂接口来得到绘制图片所需要的资源.本小节将介绍如何通过IWICImagingFactory工厂接口得到这些资源,并使用 ...