题目传送:http://poj.org/problem?id=2409

Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

1
2
3
5
8
13
21

启发博客:http://blog.csdn.net/sr_19930829/article/details/38108871

polya定理看的我好累。。总算是在理解的基础上敲出一道裸题

关键就是在循环节个数和长度以及置换群个数的理解上

1.旋转。

环每次顺时针如果旋转i格,那么每循环lcm(n,i)个可以回到原来的状态。

每次旋转i个,所以循环节长度为lcm(n,i)/i。

由此推出循环节个数为n/(lcm(n,i)/i)即gcd(n,i)。

由polya定理可得染色方案为 ∑c^gcd(n,i) 其中 i=1,2,3,4,....n,置换群个数有n个

2.翻转。

这里得考虑两种情况,循环节长度为3,即珠子本身和翻转对应的那一颗。置换群个数有n个。

当n为奇数时,共有n个循环节个数为(n/2+1)的循环群,染色方案为 n*c^(n/2+1)

当n为偶数时,共有n个循环群,其中有n/2个的循环节个数为(n/2 +1), 有n/2个的循环节个数为(n/2)。 染色方案分别为 (n/2)*c^(n/2+1)以及(n/2)*c^(n/2)。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long quick_mod(long long a,long long b)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a);
b--;
}
b/=;
a=a*a;
}
return ans;
} int main()
{
int c,s;
long long res;
while(~scanf("%d%d",&c,&s)&&(c+s))
{
res=;
//翻转
for(int i=;i<=s;i++)
res+=quick_mod(c,gcd(s,i));
//旋转
if(s%!=)
res+=s*quick_mod(c,s/+);
else
res+=s/*quick_mod(c,s/+)+s/*quick_mod(c,s/);
res/=*s;
printf("%lld\n",res);
}
return ;
}

POJ 2409 Let it Bead(polya裸题)的更多相关文章

  1. POJ 2409 Let it Bead (Polya定理)

    题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...

  2. poj 2409 Let it Bead Polya计数

    旋转能够分为n种置换,相应的循环个数各自是gcd(n,i),个i=0时不动,有n个 翻转分为奇偶讨论,奇数时有n种置换,每种有n/2+1个 偶数时有n种置换,一半是n/2+1个,一半是n/2个 啃论文 ...

  3. [ACM] POJ 2409 Let it Bead (Polya计数)

    参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...

  4. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  5. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

  6. POJ 3624 Charm Bracelet(01背包裸题)

    Charm Bracelet Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38909   Accepted: 16862 ...

  7. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  8. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  9. POJ 2409 Let it Bead ——Burnside引理

    [题目分析] 裸题直接做. 一个长度为n,颜色为m的环,本质不同的染色方案是多少. 数据范围比较小,直接做就好了. [代码] #include <cstdio> #include < ...

随机推荐

  1. java把list分成几个list

    public static void main(String[] args) { List<String> list=new ArrayList<>(); list.add(& ...

  2. 百度地图API 自定义坐标点及图片

    var map = new BMap.Map("allmap");var point = new BMap.Point(105.955754,36.525109);map.cent ...

  3. leetcode-algorithms-16 3Sum Closest

    leetcode-algorithms-16 3Sum Closest Given an array nums of n integers and an integer target, find th ...

  4. lua中的逻辑运算符

    逻辑运算符也是3个,and,or,not,只是不是返回false和true,只有false和nil表示假,其他的都是真 and and使用短路运算,a and b,如果a为假,结果已经定了,返回a假, ...

  5. JBOSS禁用delete和put方法教程

    一.背景说明(与此节修复没多大关系可跳过) 今天应用报扫描出“启用不安全的HTTP方法”漏洞需要进行修复,看后边还有IIS的修复建议:一边不满怎么用IIS一边研究了具体操作半天,由于IIS不同版本操作 ...

  6. Microsoft Windows远程桌面协议中间人攻击漏洞(CVE-2005-1794)漏洞解决方案(Windows server2003)

    1.启动“终端服务配置” 2.选择“连接”,看到“RDP-Tcp”,在其上右键,选择“属性” 3.“常规”选项卡,将加密级别修改为“符合FIPS标准”,点击应用 应用即可,实验发现并不需要重启服务或操 ...

  7. Linux磁盘性能分析(CentOS)

    1.top查看CPU是否长时间等待IO top %wa超过30%,说明IO压力很大 2.iostat查看磁盘工作时长占比 iostat -x #1表示1秒刷新一次 %util表示在过去的时间段中磁盘进 ...

  8. servlet/和/*匹配的区别

    两者真正的区别是,两者的长度不同,根据最长路径匹配的优先级,/*比/更容易被选中,而/的真正含义是,缺省匹配.既所有的URL都无法被选中的时候,就一定会选中/,可见它的优先级是最低的,这就两者的区别.

  9. @RequestParam的使用

    来源:http://825635381.iteye.com/blog/2196911 @RequestParam: 一. 基本使用,获取提交的参数 后端代码: @RequestMapping(&quo ...

  10. mysql查看和修改密码策略

    8.X版本: #查看密码策略 show variables like '%validate_password.policy%'; show variables like '%validate_pass ...