题目传送:http://poj.org/problem?id=2409

Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

1
2
3
5
8
13
21

启发博客:http://blog.csdn.net/sr_19930829/article/details/38108871

polya定理看的我好累。。总算是在理解的基础上敲出一道裸题

关键就是在循环节个数和长度以及置换群个数的理解上

1.旋转。

环每次顺时针如果旋转i格,那么每循环lcm(n,i)个可以回到原来的状态。

每次旋转i个,所以循环节长度为lcm(n,i)/i。

由此推出循环节个数为n/(lcm(n,i)/i)即gcd(n,i)。

由polya定理可得染色方案为 ∑c^gcd(n,i) 其中 i=1,2,3,4,....n,置换群个数有n个

2.翻转。

这里得考虑两种情况,循环节长度为3,即珠子本身和翻转对应的那一颗。置换群个数有n个。

当n为奇数时,共有n个循环节个数为(n/2+1)的循环群,染色方案为 n*c^(n/2+1)

当n为偶数时,共有n个循环群,其中有n/2个的循环节个数为(n/2 +1), 有n/2个的循环节个数为(n/2)。 染色方案分别为 (n/2)*c^(n/2+1)以及(n/2)*c^(n/2)。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
using namespace std; long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long quick_mod(long long a,long long b)//快速幂,复杂度log2n
{
long long ans=;
while(b)
{
if(b&)
{
ans=(ans*a);
b--;
}
b/=;
a=a*a;
}
return ans;
} int main()
{
int c,s;
long long res;
while(~scanf("%d%d",&c,&s)&&(c+s))
{
res=;
//翻转
for(int i=;i<=s;i++)
res+=quick_mod(c,gcd(s,i));
//旋转
if(s%!=)
res+=s*quick_mod(c,s/+);
else
res+=s/*quick_mod(c,s/+)+s/*quick_mod(c,s/);
res/=*s;
printf("%lld\n",res);
}
return ;
}

POJ 2409 Let it Bead(polya裸题)的更多相关文章

  1. POJ 2409 Let it Bead (Polya定理)

    题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...

  2. poj 2409 Let it Bead Polya计数

    旋转能够分为n种置换,相应的循环个数各自是gcd(n,i),个i=0时不动,有n个 翻转分为奇偶讨论,奇数时有n种置换,每种有n/2+1个 偶数时有n种置换,一半是n/2+1个,一半是n/2个 啃论文 ...

  3. [ACM] POJ 2409 Let it Bead (Polya计数)

    参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...

  4. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  5. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

  6. POJ 3624 Charm Bracelet(01背包裸题)

    Charm Bracelet Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38909   Accepted: 16862 ...

  7. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  8. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  9. POJ 2409 Let it Bead ——Burnside引理

    [题目分析] 裸题直接做. 一个长度为n,颜色为m的环,本质不同的染色方案是多少. 数据范围比较小,直接做就好了. [代码] #include <cstdio> #include < ...

随机推荐

  1. LeetCode 958. 二叉树的完全性检验

    958. 二叉树的完全性检验  显示英文描述 我的提交返回竞赛   用户通过次数119 用户尝试次数157 通过次数123 提交次数378 题目难度Medium 给定一个二叉树,确定它是否是一个完全二 ...

  2. CRM WEB UI 04明细界面添加按钮

    好了,这个是个人测试玩的,略风骚...请自行鉴阅 1.明细的组件控制器中增加全局控制属性字段: 2.概览页中工具栏相关方法,重定义GET_BUTTONS METHOD IF_BSP_WD_TOOLBA ...

  3. Div和Span

    Div ——层级元素,这一行不允许有其他元素(用来布局) Span ——用来修饰文本

  4. InnoDB支持的最大事务数量

    Innodb存储引擎有rollback segment,每个rollback segment中记录了1024个undo log segment,在每个undo log segment中进行undo页的 ...

  5. Vue.js 引入外部js方法

    1.外部文件config.js 第一种写法 //常量的定义 const config = { baseurl:'http://172.16.114.5:8088/MGT2' } //函数的定义 fun ...

  6. mac Nginx+CI出现404错误

    主要是ci框架需要配置rewrite nginx.conf配置文件添加: location /wechat/ { if (!-e $request_filename) { rewrite ^/wech ...

  7. Win10系列:C#应用控件基础3

    CheckBox控件 在应用程序的开发过程中开发者经常使用一组CheckBox控件来显示多个复选框,让用户从中选择一个或多个.当用户勾选复选框后,被选中的复选框会被标记为勾选状态,再次点击此复选框可取 ...

  8. net资源1

    .net core 例子 https://github.com/aspnet/Docs/tree/master/aspnetcore/fundamentals C#中使用Spire.docx操作Wor ...

  9. pyhton 学习 函数式编程

    函数是python内建支持的一种封装,我们通过把打断的代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计,函数就是面向过程的程序设计的基本单元 ...

  10. day18-python的正则表达式

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...