gpio_request 原形代码【转】
转自:http://blog.csdn.net/maopig/article/details/7428561
其原型为 int gpio_request(unsigned gpio, const char *label)先说说其参数,gpio则为你要申请的哪一个管脚,label则是为其取一个名字。其具体实现如下:
int gpio_request(unsigned gpio, const char *label)
{
struct gpio_desc *desc;//这个自己看源码
struct gpio_chip *chip;//这个自己看源码
int status = -EINVAL;
unsigned long flags; spin_lock_irqsave(&gpio_lock, flags);//屏蔽中断
if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断
goto done;
desc = &gpio_desc[gpio];
//这个是关键gpio_desc为定义的一个全局的数组变量,这个函数的实值也就是,
//用gpio_desc里面的一个变量来表示数组中的这个元素已经被申请了,而这个变量就是下面会看到的desc->flags。
chip = desc->chip;//按理说这个这个全局的gpio_desc如果没有初始化的话,这个chip就为空了,随后就直接返回-EINVAL了。 if (chip == NULL)如果不为空继续往下走
goto done;
if (!try_module_get(chip->owner))
goto done;
/* NOTE: gpio_request() can be called in early boot,
* before IRQs are enabled, for non-sleeping (SOC) GPIOs.
*/
if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == ) {
//这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0,分析到这儿,也差不多满足了我的个人要求。
desc_set_label(desc, label ? : "?");
status = ;
} else {
status = -EBUSY;
module_put(chip->owner);
goto done;
}
if (chip->request) {
/* chip->request may sleep */
spin_unlock_irqrestore(&gpio_lock, flags);
status = chip->request(chip, gpio - chip->base);
spin_lock_irqsave(&gpio_lock, flags);
if (status < ) {
desc_set_label(desc, NULL);
module_put(chip->owner);
clear_bit(FLAG_REQUESTED, &desc->flags);
}
}
done:
if (status)
pr_debug("gpio_request: gpio-%d (%s) status %d\n",
gpio, label ? : "?", status);
spin_unlock_irqrestore(&gpio_lock, flags);
return status;
}
[cpp] view plaincopy int gpio_request(unsigned gpio, const char *label)
{
struct gpio_desc *desc;//这个自己看源码
struct gpio_chip *chip;//这个自己看源码
int status = -EINVAL;
unsigned long flags;
spin_lock_irqsave(&gpio_lock, flags);//屏蔽中断
if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断
goto done;
desc = &gpio_desc[gpio];
//这个是关键gpio_desc为定义的一个全局的数组变量,这个函数的实值也就是,
//用gpio_desc里面的一个变量来表示数组中的这个元素已经被申请了,而这个变量就是下面会看到的desc->flags。
chip = desc->chip;//按理说这个这个全局的gpio_desc如果没有初始化的话,这个chip就为空了,随后就直接返回-EINVAL了。
if (chip == NULL)如果不为空继续往下走
goto done;
if (!try_module_get(chip->owner))
goto done;
/* NOTE: gpio_request() can be called in early boot,
* before IRQs are enabled, for non-sleeping (SOC) GPIOs.
*/
if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == ) {
//这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0,分析到这儿,也差不多满足了我的个人要求。
desc_set_label(desc, label ? : "?");
status = ;
} else {
status = -EBUSY;
module_put(chip->owner);
goto done;
}
if (chip->request) {
/* chip->request may sleep */
spin_unlock_irqrestore(&gpio_lock, flags);
status = chip->request(chip, gpio - chip->base);
spin_lock_irqsave(&gpio_lock, flags);
if (status < ) {
desc_set_label(desc, NULL);
module_put(chip->owner);
clear_bit(FLAG_REQUESTED, &desc->flags);
}
}
done:
if (status)
pr_debug("gpio_request: gpio-%d (%s) status %d\n",
gpio, label ? : "?", status);
spin_unlock_irqrestore(&gpio_lock, flags);
return status;
} davinci 平台:
[cpp] view plaincopy /*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/ #include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/bitops.h> #include <asm/irq.h>
#include <asm/io.h>
#include <asm/hardware/clock.h> #include <asm/arch/irqs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/gpio.h>
#include <asm/arch/cpu.h> #include <asm/mach/irq.h> /*
该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。
用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,
可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,
调用gpio_get_value和gpio_set_value获取设置值。
*/ static DEFINE_SPINLOCK(gpio_lock); /* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */
static DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO); /*
申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位
(在gpio_in_use中)。
*/
int gpio_request(unsigned gpio, const char *tag)
{
if (gpio >= DAVINCI_N_GPIO)
return -EINVAL;
if (test_and_set_bit(gpio, gpio_in_use))
return -EBUSY;
return ;
}
EXPORT_SYMBOL(gpio_request); /*
释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。
*/
void gpio_free(unsigned gpio)
{
if (gpio >= DAVINCI_N_GPIO)
return;
clear_bit(gpio, gpio_in_use);
}
EXPORT_SYMBOL(gpio_free); /* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含
gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/
arch-davinci/gpio.h中定义,具体如下:
struct gpio_controller {
u32 dir;
u32 out_data;
u32 set_data;
u32 clr_data;
u32 in_data;
u32 set_rising;
u32 clr_rising;
u32 set_falling;
u32 clr_falling;
u32 intstat;
}; static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void *__iomem ptr;
if (gpio >= DAVINCI_N_GPIO)
return NULL; if (gpio < 32)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else if (gpio < 64)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else if (gpio < 96)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);
return ptr;
}
由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是
gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,
便可以控制相应的gpio了。dm644x共有71个gpio,
所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,
*/
/* create a non-inlined version */
static struct gpio_controller *__iomem gpio2controller(unsigned gpio)
{
return __gpio_to_controller(gpio);
} /*
向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,
则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,
static inline u32 __gpio_mask(unsigned gpio)
{
return 1 << (gpio % 32);
}
因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,
最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,
比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。
使用这个函数之前,必须确认该gpio设置成输出模式。
*/
/*
* Assuming the pin is muxed as a gpio output, set its output value.
*/
void __gpio_set(unsigned gpio, int value)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
// 设置gpio的值
__raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);
}
EXPORT_SYMBOL(__gpio_set); /*
通过读取in_data寄存器相应该gpio的位来读取gpio的值。
使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。
*/
/*
* Read the pin's value (works even if it's set up as output);
* returns zero/nonzero.
*
* Note that changes are synched to the GPIO clock, so reading values back
* right after you've set them may give old values.
*/
int __gpio_get(unsigned gpio)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
/* 读取gpio的值,!!的目的是使得返回的值为0或1.*/
return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
} }
EXPORT_SYMBOL(__gpio_get); /*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输入,故设置dir寄存器为1.
正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0
和PINMUX1两个寄存器来设置。
*/
/*--------------------------------------------------------------------------*/ /*
* board setup code *MUST* set PINMUX0 and PINMUX1 as
* needed, and enable the GPIO clock.
*/
int gpio_direction_input(unsigned gpio)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask; if (!g)
return -EINVAL;
spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp |= mask; // 设置成1
__raw_writel(temp, &g->dir); // 设置该gpio为输入
spin_unlock(&gpio_lock);
return ;
}
EXPORT_SYMBOL(gpio_direction_input); /*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输出,故设置dir寄存器为0.
value参数用于选择gpio设置成输出后该gpio输出的值。
*/
int gpio_direction_output(unsigned gpio, int value)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask;
if (!g)
return -EINVAL; spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp &= ~mask; // 设置成0
//设置该gpio输出值
__raw_writel(mask, value ? &g->set_data : &g->clr_data);
__raw_writel(temp, &g->dir); // 设置gpio为输出
spin_unlock(&gpio_lock);
return ;
}
EXPORT_SYMBOL(gpio_direction_output); /*
向gpio设置值,0或1。
*/
void gpio_set_value(unsigned gpio, int value)
{
if (__builtin_constant_p(value)) {
struct gpio_controller *__iomem g;
u32 mask; if (gpio >= DAVINCI_N_GPIO)
__error_inval_gpio(); g = __gpio_to_controller(gpio);
mask = __gpio_mask(gpio);
if (value)
__raw_writel(mask, &g->set_data); // 该gpio输出高 else
__raw_writel(mask, &g->clr_data); // 该gpio输出低 return;
} __gpio_set(gpio, value);
}
EXPORT_SYMBOL(gpio_set_value); /*
读取gpio的值,0或1.
*/
int gpio_get_value(unsigned gpio)
{
struct gpio_controller *__iomem g; if (!__builtin_constant_p(gpio))/* 判断该gpio值是否为编译时常数,如果是常数,
函数返回 1,否则返回 0 */
return __gpio_get(gpio); if (gpio >= DAVINCI_N_GPIO)
return __error_inval_gpio(); g = __gpio_to_controller(gpio); // 读取该gpio的值 return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
}
EXPORT_SYMBOL(gpio_get_value); /*
* We expect irqs will normally be set up as input pins, but they can also be
* used as output pins ... which is convenient for testing.
*
* NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition
* to their GPIOBNK0 irq (but with a bit less overhead). But we don't have
* a good way to hook those up ...
*
* All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also
* serve as EDMA event triggers.
*/ /*
禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,
也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c
中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置
上升沿触发,也不设置下降沿触发。
*/
static void gpio_irq_disable(unsigned irq)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); __raw_writel(mask, &g->clr_falling); // 清除下降沿触发 __raw_writel(mask, &g->clr_rising); // 清除上升沿触发 } /*
中断使能。
在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。
*/
static void gpio_irq_enable(unsigned irq)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); // 如果先前为下降沿中断,则使能为下降沿中断 if (irq_desc[irq].status & IRQT_FALLING)
__raw_writel(mask, &g->set_falling); // 如果先前为上升沿中断,则使能为上升沿中断 if (irq_desc[irq].status & IRQT_RISING)
__raw_writel(mask, &g->set_rising);
} /*
设置中断类型。
在dm644x平台上,中断有上升沿和下降沿两种触发方式。
*/
static int gpio_irq_type(unsigned irq, unsigned trigger)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); if (trigger & ~(IRQT_FALLING | IRQT_RISING))
return -EINVAL; irq_desc[irq].status &= ~IRQT_BOTHEDGE;
irq_desc[irq].status |= trigger; __raw_writel(mask, (trigger & IRQT_FALLING)
? &g->set_falling : &g->clr_falling); // 设置为下降沿触发 __raw_writel(mask, (trigger & IRQT_RISING)
? &g->set_rising : &g->clr_rising); // 设置为上升沿触发 return ;
} /*
该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),
而所有中断描述结构体定义成一个全局数组irq_desc 。
*/
static struct irqchip gpio_irqchip = {
.unmask = gpio_irq_enable, /* 用于使能中断,
在enable_irq()等内核函数中会用到。*/
.mask = gpio_irq_disable,/* 用于禁止中断,
在disable_irq()等内核函数中会用到。*/
.type = gpio_irq_type, /* 用于设置中断类型,
在set_irq_type()内核函数中会用到。*/
}; /*
该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的
irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断
共用同一个中断线。
在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,
gpio0-gpio7也被注册到gpiobank中断线,但实际上并不会使用,因为它们拥有自己的
中断线。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用
IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,
gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用
IRQ_GPIOBNK5(60)中断线,
因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,
也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,
第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。
*/
static void
gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs *regs)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = 0xffff; /* we only care about one bank */
// 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位 if (irq & )
mask <<= ; /* temporarily mask (level sensitive) parent IRQ */
desc->chip->ack(irq);// 该ack函数会在arch/arm/mach-davinci/irq.c中注册。 while () {
u32 status;
struct irqdesc *gpio;
int n;
int res; /* ack any irqs */
/*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,
以备程序查询,确定是哪个gpio*/
status = __raw_readl(&g->intstat) & mask;
if (!status)
break;
__raw_writel(status, &g->intstat); // 向该位写1清除 if (irq & )
status >>= ; /* now demux them to the right lowlevel handler */
// 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。 n = (int)get_irq_data(irq); // 获取该bank对应的第一个gpio号 gpio = &irq_desc[n]; // 获取该bank第一个gpio号对应的中断描述符 while (status) { // 该bank可能有多个gpio发生了中断 res = ffs(status); // 获取第一个发生了中断的位(1-32) n += res; /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,
但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),
仅仅是为了管理,不能通过request_irq()函数来申请。*/
gpio += res; // 获得该gpio的中断描述符 /* 调用下面注册的do_simple_IRQ例程
其又会调用用户通过request_irq()
注册的中断例程
*/
desc_handle_irq(n - , gpio - , regs);
status >>= res;
}
}
desc->chip->unmask(irq); // 打开该irq中断线 /* now it may re-trigger */
} /*
* NOTE: for suspend/resume, probably best to make a sysdev (and class)
* with its suspend/resume calls hooking into the results of the set_wake()
* calls ... so if no gpios are wakeup events the clock can be disabled,
* with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0
* can be set appropriately for GPIOV33 pins.
*/
/*
注册gpio中断例程到内核中,并初始化了一些寄存器。
该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:
start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine
(init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());
调用函数指针init_machine()的例程是customize_machine(),其定义为
arch_initcall(customize_machine),所以,接下来的调用过程是:
start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->
init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。
从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。
*/
int __init davinci_gpio_irq_setup(void)
{
unsigned gpio, irq, bank, banks;
struct clk *clk; clk = clk_get(NULL, "gpio"); // 获取时钟 if (IS_ERR(clk)) {
printk(KERN_ERR "Error %ld getting gpio clock?\n",
PTR_ERR(clk));
return ;
} clk_enable(clk); // 使能gpio时钟并打开该模块电源 for (gpio = , irq = gpio_to_irq(), bank = (cpu_is_davinci_dm355() ?
IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?
IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0)); // dm644x的IRQ_GPIOBNK0(56) gpio < DAVINCI_N_GPIO; bank++) { // dm644x的DAVINCI_N_GPIO(71) struct gpio_controller *__iomem g = gpio2controller(gpio);
unsigned i; // 关该bank所有gpio的中断 __raw_writel(~, &g->clr_falling);
__raw_writel(~, &g->clr_rising); /* set up all irqs in this bank */
// 同一个bank的所有gpio共用一个中断例程gpio_irq_handler set_irq_chained_handler(bank, gpio_irq_handler);
set_irq_chipdata(bank, g);
set_irq_data(bank, (void *)irq); for (i = ; i < && gpio < DAVINCI_N_GPIO;
i++, irq++, gpio++) {
set_irq_chip(irq, &gpio_irqchip); /* 注册用于gpio中断禁止、设能
和类型选择的回调例程 */
set_irq_chipdata(irq, g); // 保存控制结构体(寄存器)的地址 set_irq_handler(irq, do_simple_IRQ);/* 为每个gpio中断设置同一个中
断例程do_simple_IRQ*/
set_irq_flags(irq, IRQF_VALID); // fiq中断有效 }
}
/*
一个共用bank中断线的gpio中断发生后的大致的流程是:
--> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->
action->handler(用户使用request_irq()注册的中断例程)
*/
/* BINTEN -- per-bank interrupt enable. genirq would also let these
* bits be set/cleared dynamically.
*/
if (cpu_is_davinci_dm355())
banks = 0x3f;
else
banks = 0x1f; // 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断 __raw_writel(banks, (void *__iomem)
IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08)); printk(KERN_INFO "DaVinci: %d gpio irqs\n", irq - gpio_to_irq()); return ;
} gpio.h /*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/ #ifndef __DAVINCI_GPIO_H
#define __DAVINCI_GPIO_H /*
* basic gpio routines
*
* board-specific init should be done by arch/.../.../board-XXX.c (maybe
* initializing banks together) rather than boot loaders; kexec() won't
* go through boot loaders.
*
* the gpio clock will be turned on when gpios are used, and you may also
* need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are
* used as gpios, not with other peripherals.
*
* GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe
* for later updates, code should write GPIO(N) or:
* - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)
* - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)
*
* For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc
* for now, that's != GPIO(N)
*/
#define GPIO(X) (X) /* 0 <= X <= 70 */
#define GPIOV18(X) (X) /* 1.8V i/o; 0 <= X <= 53 */
#define GPIOV33(X) ((X)+54) /* 3.3V i/o; 0 <= X <= 17 */ /*
寄存器都是32位到,每位对应一个gpio。
*/
struct gpio_controller {
u32 dir; // gpio方向设置寄存器 u32 out_data; // gpio设置为输出时,表示输出状态(0或1) u32 set_data; // gpio设置为输出时,用于输出高电平 u32 clr_data; // gpio设置为输出时,用于输出低电平 u32 in_data; // gpio设置为输入时,用于读取输入值 u32 set_rising; // gpio中断上升沿触发设置 u32 clr_rising; // gpio中断上升沿触发清除 u32 set_falling; // gpio中断下降沿触发设置 u32 clr_falling; // gpio中断下降沿触发清除 u32 intstat; // gpio中断状态位,由硬件设置,可读取,写1时清除。 }; /* The __gpio_to_controller() and __gpio_mask() functions inline to constants
* with constant parameters; or in outlined code they execute at runtime.
*
* You'd access the controller directly when reading or writing more than
* one gpio value at a time, and to support wired logic where the value
* being driven by the cpu need not match the value read back.
*
* These are NOT part of the cross-platform GPIO interface
*/
static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void *__iomem ptr; if (gpio >= DAVINCI_N_GPIO)
return NULL; if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88); return ptr;
} static inline u32 __gpio_mask(unsigned gpio)
{
return << (gpio % );
} /* The get/set/clear functions will inline when called with constant
* parameters, for low-overhead bitbanging. Illegal constant parameters
* cause link-time errors.
*
* Otherwise, calls with variable parameters use outlined functions.
*/
extern int __error_inval_gpio(void); extern void __gpio_set(unsigned gpio, int value);
extern int __gpio_get(unsigned gpio); /* Returns zero or nonzero; works for gpios configured as inputs OR
* as outputs.
*
* NOTE: changes in reported values are synchronized to the GPIO clock.
* This is most easily seen after calling gpio_set_value() and then immediatly
* gpio_get_value(), where the gpio_get_value() would return the old value
* until the GPIO clock ticks and the new value gets latched.
*/
extern int gpio_get_value(unsigned gpio);
extern void gpio_set_value(unsigned gpio, int value); /* powerup default direction is IN */
extern int gpio_direction_input(unsigned gpio);
extern int gpio_direction_output(unsigned gpio, int value); #include <asm-generic/gpio.h> /* cansleep wrappers */ extern int gpio_request(unsigned gpio, const char *tag);
extern void gpio_free(unsigned gpio); static inline int gpio_to_irq(unsigned gpio)
{
return DAVINCI_N_AINTC_IRQ + gpio;
} static inline int irq_to_gpio(unsigned irq)
{
return irq - DAVINCI_N_AINTC_IRQ;
} #endif /* __DAVINCI_GPIO_H */ [cpp] view plaincopy /*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/ #include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/bitops.h> #include <asm/irq.h>
#include <asm/io.h>
#include <asm/hardware/clock.h> #include <asm/arch/irqs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/gpio.h>
#include <asm/arch/cpu.h> #include <asm/mach/irq.h> /*
该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。
用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,
可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,
调用gpio_get_value和gpio_set_value获取设置值。
*/ static DEFINE_SPINLOCK(gpio_lock); /* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */
static DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO); /*
申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位
(在gpio_in_use中)。
*/
int gpio_request(unsigned gpio, const char *tag)
{
if (gpio >= DAVINCI_N_GPIO)
return -EINVAL;
if (test_and_set_bit(gpio, gpio_in_use))
return -EBUSY;
return ;
}
EXPORT_SYMBOL(gpio_request); /*
释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。
*/
void gpio_free(unsigned gpio)
{
if (gpio >= DAVINCI_N_GPIO)
return;
clear_bit(gpio, gpio_in_use);
}
EXPORT_SYMBOL(gpio_free); /* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含
gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/
arch-davinci/gpio.h中定义,具体如下:
struct gpio_controller {
u32 dir;
u32 out_data;
u32 set_data;
u32 clr_data;
u32 in_data;
u32 set_rising;
u32 clr_rising;
u32 set_falling;
u32 clr_falling;
u32 intstat;
}; static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void *__iomem ptr;
if (gpio >= DAVINCI_N_GPIO)
return NULL; if (gpio < 32)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else if (gpio < 64)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else if (gpio < 96)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);
return ptr;
}
由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是
gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,
便可以控制相应的gpio了。dm644x共有71个gpio,
所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,
*/
/* create a non-inlined version */
static struct gpio_controller *__iomem gpio2controller(unsigned gpio)
{
return __gpio_to_controller(gpio);
} /*
向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,
则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,
static inline u32 __gpio_mask(unsigned gpio)
{
return 1 << (gpio % 32);
}
因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,
最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,
比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。
使用这个函数之前,必须确认该gpio设置成输出模式。
*/
/*
* Assuming the pin is muxed as a gpio output, set its output value.
*/
void __gpio_set(unsigned gpio, int value)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
// 设置gpio的值
__raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);
}
EXPORT_SYMBOL(__gpio_set); /*
通过读取in_data寄存器相应该gpio的位来读取gpio的值。
使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。
*/
/*
* Read the pin's value (works even if it's set up as output);
* returns zero/nonzero.
*
* Note that changes are synched to the GPIO clock, so reading values back
* right after you've set them may give old values.
*/
int __gpio_get(unsigned gpio)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
/* 读取gpio的值,!!的目的是使得返回的值为0或1.*/
return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
} }
EXPORT_SYMBOL(__gpio_get); /*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输入,故设置dir寄存器为1.
正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0
和PINMUX1两个寄存器来设置。
*/
/*--------------------------------------------------------------------------*/ /*
* board setup code *MUST* set PINMUX0 and PINMUX1 as
* needed, and enable the GPIO clock.
*/
int gpio_direction_input(unsigned gpio)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask; if (!g)
return -EINVAL;
spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp |= mask; // 设置成1
__raw_writel(temp, &g->dir); // 设置该gpio为输入
spin_unlock(&gpio_lock);
return ;
}
EXPORT_SYMBOL(gpio_direction_input); /*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输出,故设置dir寄存器为0.
value参数用于选择gpio设置成输出后该gpio输出的值。
*/
int gpio_direction_output(unsigned gpio, int value)
{
struct gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask;
if (!g)
return -EINVAL; spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp &= ~mask; // 设置成0
//设置该gpio输出值
__raw_writel(mask, value ? &g->set_data : &g->clr_data);
__raw_writel(temp, &g->dir); // 设置gpio为输出
spin_unlock(&gpio_lock);
return ;
}
EXPORT_SYMBOL(gpio_direction_output); /*
向gpio设置值,0或1。
*/
void gpio_set_value(unsigned gpio, int value)
{
if (__builtin_constant_p(value)) {
struct gpio_controller *__iomem g;
u32 mask; if (gpio >= DAVINCI_N_GPIO)
__error_inval_gpio(); g = __gpio_to_controller(gpio);
mask = __gpio_mask(gpio);
if (value)
__raw_writel(mask, &g->set_data); // 该gpio输出高 else
__raw_writel(mask, &g->clr_data); // 该gpio输出低 return;
} __gpio_set(gpio, value);
}
EXPORT_SYMBOL(gpio_set_value); /*
读取gpio的值,0或1.
*/
int gpio_get_value(unsigned gpio)
{
struct gpio_controller *__iomem g; if (!__builtin_constant_p(gpio))/* 判断该gpio值是否为编译时常数,如果是常数,
函数返回 1,否则返回 0 */
return __gpio_get(gpio); if (gpio >= DAVINCI_N_GPIO)
return __error_inval_gpio(); g = __gpio_to_controller(gpio); // 读取该gpio的值 return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
}
EXPORT_SYMBOL(gpio_get_value); /*
* We expect irqs will normally be set up as input pins, but they can also be
* used as output pins ... which is convenient for testing.
*
* NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition
* to their GPIOBNK0 irq (but with a bit less overhead). But we don't have
* a good way to hook those up ...
*
* All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also
* serve as EDMA event triggers.
*/ /*
禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,
也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c
中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置
上升沿触发,也不设置下降沿触发。
*/
static void gpio_irq_disable(unsigned irq)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); __raw_writel(mask, &g->clr_falling); // 清除下降沿触发 __raw_writel(mask, &g->clr_rising); // 清除上升沿触发 } /*
中断使能。
在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。
*/
static void gpio_irq_enable(unsigned irq)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); // 如果先前为下降沿中断,则使能为下降沿中断 if (irq_desc[irq].status & IRQT_FALLING)
__raw_writel(mask, &g->set_falling); // 如果先前为上升沿中断,则使能为上升沿中断 if (irq_desc[irq].status & IRQT_RISING)
__raw_writel(mask, &g->set_rising);
} /*
设置中断类型。
在dm644x平台上,中断有上升沿和下降沿两种触发方式。
*/
static int gpio_irq_type(unsigned irq, unsigned trigger)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq)); if (trigger & ~(IRQT_FALLING | IRQT_RISING))
return -EINVAL; irq_desc[irq].status &= ~IRQT_BOTHEDGE;
irq_desc[irq].status |= trigger; __raw_writel(mask, (trigger & IRQT_FALLING)
? &g->set_falling : &g->clr_falling); // 设置为下降沿触发 __raw_writel(mask, (trigger & IRQT_RISING)
? &g->set_rising : &g->clr_rising); // 设置为上升沿触发 return ;
} /*
该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),
而所有中断描述结构体定义成一个全局数组irq_desc 。
*/
static struct irqchip gpio_irqchip = {
.unmask = gpio_irq_enable, /* 用于使能中断,
在enable_irq()等内核函数中会用到。*/
.mask = gpio_irq_disable,/* 用于禁止中断,
在disable_irq()等内核函数中会用到。*/
.type = gpio_irq_type, /* 用于设置中断类型,
在set_irq_type()内核函数中会用到。*/
}; /*
该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的
irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断
共用同一个中断线。
在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,
gpio0-gpio7也被注册到gpiobank中断线,但实际上并不会使用,因为它们拥有自己的
中断线。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用
IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,
gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用
IRQ_GPIOBNK5(60)中断线,
因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,
也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,
第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。
*/
static void
gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs *regs)
{
struct gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = 0xffff; /* we only care about one bank */
// 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位 if (irq & )
mask <<= ; /* temporarily mask (level sensitive) parent IRQ */
desc->chip->ack(irq);// 该ack函数会在arch/arm/mach-davinci/irq.c中注册。 while () {
u32 status;
struct irqdesc *gpio;
int n;
int res; /* ack any irqs */
/*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,
以备程序查询,确定是哪个gpio*/
status = __raw_readl(&g->intstat) & mask;
if (!status)
break;
__raw_writel(status, &g->intstat); // 向该位写1清除 if (irq & )
status >>= ; /* now demux them to the right lowlevel handler */
// 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。 n = (int)get_irq_data(irq); // 获取该bank对应的第一个gpio号 gpio = &irq_desc[n]; // 获取该bank第一个gpio号对应的中断描述符 while (status) { // 该bank可能有多个gpio发生了中断 res = ffs(status); // 获取第一个发生了中断的位(1-32) n += res; /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,
但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),
仅仅是为了管理,不能通过request_irq()函数来申请。*/
gpio += res; // 获得该gpio的中断描述符 /* 调用下面注册的do_simple_IRQ例程
其又会调用用户通过request_irq()
注册的中断例程
*/
desc_handle_irq(n - , gpio - , regs);
status >>= res;
}
}
desc->chip->unmask(irq); // 打开该irq中断线 /* now it may re-trigger */
} /*
* NOTE: for suspend/resume, probably best to make a sysdev (and class)
* with its suspend/resume calls hooking into the results of the set_wake()
* calls ... so if no gpios are wakeup events the clock can be disabled,
* with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0
* can be set appropriately for GPIOV33 pins.
*/
/*
注册gpio中断例程到内核中,并初始化了一些寄存器。
该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:
start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine
(init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());
调用函数指针init_machine()的例程是customize_machine(),其定义为
arch_initcall(customize_machine),所以,接下来的调用过程是:
start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->
init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。
从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。
*/
int __init davinci_gpio_irq_setup(void)
{
unsigned gpio, irq, bank, banks;
struct clk *clk; clk = clk_get(NULL, "gpio"); // 获取时钟 if (IS_ERR(clk)) {
printk(KERN_ERR "Error %ld getting gpio clock?\n",
PTR_ERR(clk));
return ;
} clk_enable(clk); // 使能gpio时钟并打开该模块电源 for (gpio = , irq = gpio_to_irq(), bank = (cpu_is_davinci_dm355() ?
IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?
IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0)); // dm644x的IRQ_GPIOBNK0(56) gpio < DAVINCI_N_GPIO; bank++) { // dm644x的DAVINCI_N_GPIO(71) struct gpio_controller *__iomem g = gpio2controller(gpio);
unsigned i; // 关该bank所有gpio的中断 __raw_writel(~, &g->clr_falling);
__raw_writel(~, &g->clr_rising); /* set up all irqs in this bank */
// 同一个bank的所有gpio共用一个中断例程gpio_irq_handler set_irq_chained_handler(bank, gpio_irq_handler);
set_irq_chipdata(bank, g);
set_irq_data(bank, (void *)irq); for (i = ; i < && gpio < DAVINCI_N_GPIO;
i++, irq++, gpio++) {
set_irq_chip(irq, &gpio_irqchip); /* 注册用于gpio中断禁止、设能
和类型选择的回调例程 */
set_irq_chipdata(irq, g); // 保存控制结构体(寄存器)的地址 set_irq_handler(irq, do_simple_IRQ);/* 为每个gpio中断设置同一个中
断例程do_simple_IRQ*/
set_irq_flags(irq, IRQF_VALID); // fiq中断有效 }
}
/*
一个共用bank中断线的gpio中断发生后的大致的流程是:
--> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->
action->handler(用户使用request_irq()注册的中断例程)
*/
/* BINTEN -- per-bank interrupt enable. genirq would also let these
* bits be set/cleared dynamically.
*/
if (cpu_is_davinci_dm355())
banks = 0x3f;
else
banks = 0x1f; // 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断 __raw_writel(banks, (void *__iomem)
IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08)); printk(KERN_INFO "DaVinci: %d gpio irqs\n", irq - gpio_to_irq()); return ;
} gpio.h /*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/ #ifndef __DAVINCI_GPIO_H
#define __DAVINCI_GPIO_H /*
* basic gpio routines
*
* board-specific init should be done by arch/.../.../board-XXX.c (maybe
* initializing banks together) rather than boot loaders; kexec() won't
* go through boot loaders.
*
* the gpio clock will be turned on when gpios are used, and you may also
* need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are
* used as gpios, not with other peripherals.
*
* GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe
* for later updates, code should write GPIO(N) or:
* - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)
* - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)
*
* For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc
* for now, that's != GPIO(N)
*/
#define GPIO(X) (X) /* 0 <= X <= 70 */
#define GPIOV18(X) (X) /* 1.8V i/o; 0 <= X <= 53 */
#define GPIOV33(X) ((X)+54) /* 3.3V i/o; 0 <= X <= 17 */ /*
寄存器都是32位到,每位对应一个gpio。
*/
struct gpio_controller {
u32 dir; // gpio方向设置寄存器 u32 out_data; // gpio设置为输出时,表示输出状态(0或1) u32 set_data; // gpio设置为输出时,用于输出高电平 u32 clr_data; // gpio设置为输出时,用于输出低电平 u32 in_data; // gpio设置为输入时,用于读取输入值 u32 set_rising; // gpio中断上升沿触发设置 u32 clr_rising; // gpio中断上升沿触发清除 u32 set_falling; // gpio中断下降沿触发设置 u32 clr_falling; // gpio中断下降沿触发清除 u32 intstat; // gpio中断状态位,由硬件设置,可读取,写1时清除。 }; /* The __gpio_to_controller() and __gpio_mask() functions inline to constants
* with constant parameters; or in outlined code they execute at runtime.
*
* You'd access the controller directly when reading or writing more than
* one gpio value at a time, and to support wired logic where the value
* being driven by the cpu need not match the value read back.
*
* These are NOT part of the cross-platform GPIO interface
*/
static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void *__iomem ptr; if (gpio >= DAVINCI_N_GPIO)
return NULL; if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else if (gpio < )
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88); return ptr;
} static inline u32 __gpio_mask(unsigned gpio)
{
return << (gpio % );
} /* The get/set/clear functions will inline when called with constant
* parameters, for low-overhead bitbanging. Illegal constant parameters
* cause link-time errors.
*
* Otherwise, calls with variable parameters use outlined functions.
*/
extern int __error_inval_gpio(void); extern void __gpio_set(unsigned gpio, int value);
extern int __gpio_get(unsigned gpio); /* Returns zero or nonzero; works for gpios configured as inputs OR
* as outputs.
*
* NOTE: changes in reported values are synchronized to the GPIO clock.
* This is most easily seen after calling gpio_set_value() and then immediatly
* gpio_get_value(), where the gpio_get_value() would return the old value
* until the GPIO clock ticks and the new value gets latched.
*/
extern int gpio_get_value(unsigned gpio);
extern void gpio_set_value(unsigned gpio, int value); /* powerup default direction is IN */
extern int gpio_direction_input(unsigned gpio);
extern int gpio_direction_output(unsigned gpio, int value); #include <asm-generic/gpio.h> /* cansleep wrappers */ extern int gpio_request(unsigned gpio, const char *tag);
extern void gpio_free(unsigned gpio); static inline int gpio_to_irq(unsigned gpio)
{
return DAVINCI_N_AINTC_IRQ + gpio;
} static inline int irq_to_gpio(unsigned irq)
{
return irq - DAVINCI_N_AINTC_IRQ;
} #endif /* __DAVINCI_GPIO_H */
gpio_request 原形代码【转】的更多相关文章
- gpio_request 原形代码
http://blog.csdn.net/maopig/article/details/7428561 其原型为 int gpio_request(unsigned gpio, const char ...
- windows消息钩子注册底层机制浅析
标 题: [原创]消息钩子注册浅析 作 者: RootSuLe 时 间: 2011-06-18,23:10:34 链 接: http://bbs.pediy.com/showthread.php?t= ...
- 自己学习smarty的一些代码 和记录
http://www.yiibai.com/smarty/smarty_install.html 手册可以看这里 index.tpl <!DOCTYPE html> <html&g ...
- jstl标签库基础教程及其使用代码
概述 在 JSP 页面中,使用标签库代替传统的 Java 片段语言来实现页面的显示逻辑已经不是新技术了,然而,由自定义标签很容易造成重复定义和非标准的实现.鉴于此,出现了 JSTL ( JSP Sta ...
- 基于等待队列及poll机制的按键驱动代码分析和测试代码
按键驱动分析: #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> ...
- Linux下实现流水灯等功能的LED驱动代码及测试实例
驱动代码: #include <linux/errno.h> #include <linux/kernel.h> #include <linux/module.h> ...
- Linux下简易蜂鸣器驱动代码及测试实例
驱动代码: #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> ...
- LED字符设备驱动实例及测试代码
驱动代码如下: #include <linux/kernel.h>//内核头文件 #include <linux/init.h>//__init等 #include <l ...
- 转:gpio_request
今天再次学习SD卡驱动,遇到pgio_request这个函数,始终不知道其什么意思,看了几遍源代码才有了点感觉.现将其关键部分再此说明一下,以备自己以后复习,或是路客参考. 一般gpio_reques ...
随机推荐
- linux一次性解压多个.gz或者.tar.gz文件
对于解压多个.gz文件的,用此命令: for gz in *.gz; do gunzip $gz; done 对于解压多个.tar.gz文件的,用下面命令: for tar in *.tar.gz; ...
- 【HDU1693】Eat the Trees(插头dp)
[HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...
- 【dp专题】NOIP真题-DP专题练习
这里学习一下DP的正确姿势. 也为了ZJOI2019去水一下做一些准备 题解就随便写写啦. 后续还是会有专题练习和综合练习的. P1005 矩阵取数游戏 给出$n \times m$矩阵每次在每一行取 ...
- POJ1163(简单的DP)
题目链接:http://poj.org/problem?id=1163 Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows ...
- Division, UVa 72(暴力求解)
题目链接:https://vjudge.net/problem/UVA-725 Write a program that finds and displays all pairs of 5-digit ...
- 二分插入、bisect
在一个有序序列(从小到大)中查找一个元素 每次将元素与序列中间位置的元素进行比较 如果大于中点,则在后半段.如果小于中点,则在前半段.以此类推 时间复杂度为O(logn) 有一个无序序列[37, 99 ...
- HDU 1074 Doing Homework (动态规划,位运算)
HDU 1074 Doing Homework (动态规划,位运算) Description Ignatius has just come back school from the 30th ACM/ ...
- select和select的数据渲染,你知道多少呢?
select和option是一对好兄弟,他们是一个很强大的组合.多个元素组合在一起才有的属性,他们两个加起来一切都有了. 所谓的面包也要,鲜花也要,就是这么的任性. 首先看看他们的基本html结构 当 ...
- Excel:LOOKUP函数的经典用法
1.逆向查询 下面这个表中,A:C列是员工基础信息表,分别是部门.姓名和职务. 现在要根据E5单元格中的员工姓名,在这个信息表中查询属于哪个部门,也就是咱们常说的逆向查询,就可以使用LOOKUP函数 ...
- frp源码剖析-frp中的log模块
前言&引入 一个好的log模块可以帮助我们排错,分析,统计 一般来说log中需要有时间.栈信息(比如说文件名行号等),这些东西一般某些底层log模块已经帮我们做好了.但在业务中还有很多我们需要 ...