import os
from PIL import Image
from torch.utils import data
import numpy as np
from torchvision import transforms as T class My_Data(data.Dataset): def __init__(self, root, transforms=None, train=True, test=False):
'''
目标:获取所有图片路径,并根据训练、验证、测试划分数据
'''
self.test = test
classs = os.listdir(root)
imgs = []
labels = []
for idx, folder in enumerate(classs):
cate = os.path.join(root, folder)
for img_num, im in enumerate(os.listdir(cate)):
img_path = os.path.join(cate, im)
#打包图片路径(转换为list)
imgs.append(img_path)
#打包标签路径(转换为list)
labels.append(idx)
if self.test:
imgs = sorted(imgs, key=lambda x: int(x.split('.')[-2].split('/')[-1]))
else: imgs = list(zip(imgs , labels))
#将图片路径与标签打包成一个list imgs_num = len(imgs) # shuffle imgs
np.random.seed(100)
imgs = np.random.permutation(imgs) # 划分训练、验证集,验证:训练 = 3:7
if self.test:
self.imgs = imgs
elif train:
self.imgs = imgs[:int(0.7 * imgs_num)]
else:
self.imgs = imgs[int(0.7 * imgs_num):] if transforms is None: # 数据转换操作,测试验证和训练的数据转换有所区别
normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 测试集和验证集不用数据增强
if self.test or not train:
self.transforms = T.Compose([
T.Resize(32),
T.CenterCrop(32),
T.ToTensor(),
normalize
])
# 训练集需要数据增强
else:
self.transforms = T.Compose([
T.Resize(32),
T.RandomResizedCrop(32),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize
]) def __getitem__(self,index):
'''
返回一张图片的数据
对于测试集,没有label,返回图片id,如1000.jpg返回1000
送入一个batch_size的数据
''' img_lables = self.imgs[index]
img_path = img_lables[0] if self.test:
label = int(self.imgs[index].split('.')[-2].split('/')[-1])
else:
label = int(img_lables[1]) data = Image.open(img_path)
data = self.transforms(data)
return data, label def __len__(self):
'''
返回数据集中所有图片的个数
'''
return len(self.imgs)

作为备份使用。

pytorch实现花朵数据集读取的更多相关文章

  1. Pytorch数据集读取

    Pytorch中数据集读取 在机器学习中,有很多形式的数据,我们就以最常用的几种来看: 在Pytorch中,他自带了很多数据集,比如MNIST.CIFAR10等,这些自带的数据集获得和读取十分简便: ...

  2. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  3. [Pytorch]PyTorch Dataloader自定义数据读取

    整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所 ...

  4. pytorch 加载数据集

    pytorch初学者,想加载自己的数据,了解了一下数据类型.维度等信息,方便以后加载其他数据. 1 torchvision.transforms实现数据预处理 transforms.Totensor( ...

  5. 【小白学PyTorch】16 TF2读取图片的方法

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考 ...

  6. CIFAR-10数据集读取

    参考:https://jingyan.baidu.com/article/656db9183296c7e381249cf4.html 1.使用读取方式pickle def unpickle(file) ...

  7. 什么是pytorch(4.数据集加载和处理)(翻译)

    数据集加载和处理 这里主要涉及两个包:torchvision.datasets 和torch.utils.data.Dataset 和DataLoader torchvision.datasets是一 ...

  8. 深度学习(tensorflow) —— 自己数据集读取opencv

    先来看一下我们的目录: dataset1 和creat_dataset.py 属于同一目录 mergeImg1 和mergeImg2 为Dataset1的两子目录(两类为例子)目录中存储图像等文件 核 ...

  9. pytorch 计算图像数据集的均值和标准差

    在使用 torchvision.transforms进行数据处理时我们经常进行的操作是: transforms.Normalize((0.485,0.456,0.406), (0.229,0.224, ...

随机推荐

  1. laravel redis 删除指定前缀的 key

    // 前缀 $prefix = 'abc'; // 需要在前面连接上应用的缓存前缀 $keys = app('redis')->keys(config('cache.prefix') . $pr ...

  2. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...

  3. 题解【bzoj4650 [NOI2016]优秀的拆分】

    Description 求对每一个连续字串将它切割成形如 AABB 的形式的方案数之和 Solution 显然 AABB 是由两个 AA 串拼起来的 考虑维护两个数组 a[i] 和 b[i] ,其中 ...

  4. AE与C#入门笔记

    http://www.cnblogs.com/e3e4/articles/3695214.html

  5. Python基础【day02】:列表(三)

    本节内容 0.列表常用功能汇总1.定义列表2.访问列表中的元素3.切片4.追加5.插入6.修改7.拷贝8.删除9.扩展10.统计11.翻转12.排序13.获取下标值14.清空列表 列表是Python最 ...

  6. SQL连接服务器链接失败

    链接服务器"AGPSServer"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 "登录超时已过期".链接服务器" ...

  7. 数据库sql语句例题(转)

    SQL数据库面试题以及答案(50例题) Student(S#,Sname,Sage,Ssex)学生表 S#:学号 Sname:学生姓名 Sage:学生年龄 Ssex:学生性别 Course(C#,Cn ...

  8. Prim算法:最小生成树

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. C 编译过程浅析

    From where i stand, there are two programmig languages in the world, which is C lang and the other. ...

  10. 使用 CSS3 的 box-sizing 属性设置元素大小包含 border 与 padding

    Ø  默认情况下,内部元素(如:input)的宽度或高度,是不会包含元素的边框和内边距的,这时就需要使用 box-sizing 属性设置该元素. Ø  box-sizing 是 CSS3 的属性,可以 ...