Description

  有一个长度为n的数组{a1,a2,…,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Input

  第一行n,m。

  第二行为n个数。

  从第三行開始,每行一个询问l,r。

Output

  一行一个数,表示每一个询问的答案。

Sample Input

5 5

2 1 0 2 1

3 3

2 3

2 4

1 2

3 5

Sample Output

1

2

3

0

3

HINT

数据规模和约定

  对于100%的数据:

  1<=n,m<=200000

  0<=ai<=109

  1<=l<=r<=n

  对于30%的数据:

  1<=n,m<=1000

Source

By 佚名提供

同3339

仅仅只是加了离散化

(双倍经验 古人诚不欺我也

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 200010
#define GET (ch>='0'&&ch<='9')
#define lchild rt<<1,l,mid
#define rchild rt<<1|1,mid+1,r
#define ln rt<<1
#define rn rt<<1|1
#define MAXINT 0x7fffffff
using namespace std;
int n,m,cnt,mex,now=1;
int a[MAXN],b[MAXN],next[MAXN],last[MAXN],sg[MAXN];
bool hash[MAXN];
void in(int &x)
{
char ch=getchar();x=0;
while (!GET) ch=getchar();
while (GET) x=x*10+ch-'0',ch=getchar();
}
struct seg
{
int l,r,minn;
}tree[MAXN<<2];
struct Query
{
int l,r,id,ans;
bool operator <(const Query& a)const {return l==a.l? r<a.r:l<a.l;}
}q[MAXN];
bool cmp(Query a,Query b) {return a.id<b.id;}
int find(int x)
{
int l=1,r=cnt,mid=(l+r)>>1;
while (l<=r)
{
mid=(l+r)>>1;
if (b[mid]<x) l=mid+1;
else r=mid-1;
}
return l;
}
void push_down(int rt)
{
if (tree[rt].l==tree[rt].r) return;
tree[ln].minn=min(tree[rt].minn,tree[ln].minn);tree[rn].minn=min(tree[rn].minn,tree[rt].minn);
}
void build(int rt=1,int l=1,int r=n)
{
tree[rt].l=l;tree[rt].r=r;tree[rt].minn=MAXINT;
if (l==r) {tree[rt].minn=sg[l];return;}
int mid=(l+r)>>1;build(lchild);build(rchild);
}
void modify(int rt,int l,int r,int delta)
{
push_down(rt);
int L=tree[rt].l,R=tree[rt].r,mid=(L+R)>>1;
if (l<=L&&r>=R) {tree[rt].minn=min(tree[rt].minn,delta);return;}
if (r<=mid) modify(ln,l,r,delta);
else if (l>mid) modify(rn,l,r,delta);
else modify(ln,l,mid,delta),modify(rn,mid+1,r,delta);
}
int query(int rt,int x)
{
push_down(rt);
int L=tree[rt].l,R=tree[rt].r,mid=(L+R)>>1;
if (L==R) return tree[rt].minn;
if (x<=mid) return query(ln,x);
else return query(rn,x);
}
int main()
{
in(n);in(m);int x;
for (int i=1;i<=n;i++) in(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
for (int i=1;i<=n;i++) if (i==1||b[i]!=b[i-1]) b[++cnt]=b[i];
for (int i=1;i<=n;i++)
{
x=find(a[i]);hash[x]=1;
if (a[i]==mex) for (;hash[x];) if (b[++x]!=++mex) break;
sg[i]=mex;
}
build();
for (int i=n;i;i--) x=find(a[i]),next[i]=last[x],last[x]=i;
for (int i=1;i<=m;i++) in(q[i].l),in(q[i].r),q[i].id=i;
sort(q+1,q+m+1);
for (int i=1;i<=m;i++)
{
while (now<q[i].l)
{
if (!next[now]) next[now]=n+1;
modify(1,now,next[now]-1,a[now]);now++;
}
q[i].ans=query(1,q[i].r);
}
sort(q+1,q+m+1,cmp);
for (int i=1;i<=m;i++) printf("%d\n",q[i].ans);
}

【BZOJ3585】mex的更多相关文章

  1. 【bzoj3585】mex 线段树 mex,sg

    Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  2. 【数学】mex是什么

    最近在看博弈论,SG函数,所以什么是mex呢 然后百度了一下得到: mex(S) 的值为集合 S 中没有出现过的最小自然数.例如,mex({1,2}) = 0.mex({0,1,2,3}) = 4

  3. 【XSY2484】mex 离散化 线段树

    题目大意 给你一个无限长的数组,初始的时候都为\(0\),有3种操作: 操作\(1\)是把给定区间\([l,r]\)设为\(1\): 操作\(2\)是把给定区间\([l,r]\)设为\(0\): 操作 ...

  4. 【XSY2484】mex

    Description 给你一个无限长的数组,初始的时候都为0,有3种操作: 操作1是把给定区间[l,r] 设为1, 操作2是把给定区间[l,r] 设为0, 操作3把给定区间[l,r] 0,1反转. ...

  5. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  6. 【codeforces】【比赛题解】#862 CF Round #435 (Div.2)

    这次比赛打得很舒服,莫名得了个Rank41,涨了219的Rating,就比较优秀.不过还是没有闫神厉害啊.题目链接::P. [A]MEX 题意: Evil博士把Mahmoud和Ehab绑架到了邪恶之地 ...

  7. 【Luogu4137】Rmq Problem/mex (莫队)

    [Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...

  8. 【HDU1848】Fibonacci again and again(博弈论)

    [HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...

  9. 【codeforces】940F题解

    CF Round #466的最后一题,颇有难度,正解是带修改莫队算法. [题意] 给定一个长度为\(n\)的数组\(a\),并且要求执行\(q\)个操作,有两种不同的操作: ①询问一个区间\([l,r ...

随机推荐

  1. 浅析C语言的变量

    参考资料 寄存器变量 用register声明的变量是寄存器变量,是存放在CPU的寄存器里的.而我们平时声明的变量是存放在内存中的.虽说内存的速度已经很快了,不过跟寄存器比起来还是差得远. 寄存器变量和 ...

  2. [转] Anaconda使用总结

    机器上的不同用户完全可以安装.配置自己的Anaconda,不会互相影响. 对于Mac.Linux系统,Anaconda安装好后,实际上就是在主目录下多了个文件夹(~/anaconda)而已,Windo ...

  3. android-getTextSize返回值是以像素(px)为单位的,setTextSize()以sp为单位

    使用如下代码时,发现字号不会变大,反而会变小:size = (int) mText.getTextSize() + 1;mText.setTextSize(size);后来发现getTextSize返 ...

  4. mydumper下载安装

    下载地址   https://github.com/maxbube/mydumper [root@gg ~]#cd mydumper [root@gg mydumper]# cmake . -bash ...

  5. 6-10 下落的树叶 uva699

    类似第九题  都是属于比较巧妙的题目  ! 用一个p数组来保存水平值   然后开始built 自然就会按照自左而右的顺序来读取!!!!!!这很重要 #include<bits/stdc++.h& ...

  6. Jquery框架1.选择器|效果图|属性、文档操作

    1.JavaScript和jquery的对比 书写繁琐,代码量大 代码复杂 动画效果,很难实现.使用定时器 各种操作和处理 <!DOCTYPE html> <html lang=&q ...

  7. Cpu 常见系列以及型号

    Intel旗下 赛扬(Celeron)——桌面低端 奔腾(Pentium)—— 桌面中端 酷睿 (Core)——桌面高端 至强(Xeon)——服务器中端 安腾(Itanium)——服务器高端 凌动(A ...

  8. [OpenCV-Python] OpenCV 中计算摄影学 部分 IX 对象检测 部分 X

    部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoisi ...

  9. (转)细说JDK动态代理的实现原理

    原文:http://blog.csdn.net/mhmyqn/article/details/48474815 关于JDK的动态代理,最为人熟知的可能要数Spring AOP的实现,默认情况下,Spr ...

  10. 附002.Docker常见命令

    # docker --help Usage: docker [OPTIONS] COMMAND [arg...] docker daemon [ --help | ... ] docker [ -h ...