题解:

好难的dp啊。。。看题解看了好久才看懂

http://blog.csdn.net/akak__ii/article/details/65935711

如果一开始的图就不是仙人掌,答案显然为0,可以Tarjan判断。
环显然不能产生贡献,所以可以把环边都断开。
现在模型转化为,给定一棵树,用路径去覆盖树上的每一条边,且路径不能相交,求方案数。
设fifi表示做完了ii的子树,且没有路径可以向上扩展。
设gigi表示做完了ii的子树,且有路径可以向上扩展。
设hihi表示有ii个点,它们之间匹配的方案数。
记numnum为点xx的儿子个数,那么显然 hi=hi−+hi−×(i−)
hi=hi−+hi−×(i−) fx=Πgson×hnum
fx=Πgson×hnum gx=fx+Πgson×hnum−×num
gx=fx+Πgson×hnum−×num 简单解释一下:
hihi转移的时候考虑当前第ii个儿子的选择,如果这个儿子不匹配,那就有hi−1hi−1种方案,如果匹配,那就可以和前面i−1i−1个儿子中的一个匹配,方案是(i−)×hi−(i−)×hi−
fxfx的转移:每个儿子都必须要可以往上扩,且各个儿子之间相对独立所以是ΠgsonΠgson,然后一共有hnumhnum种儿子的匹配方案,所以乘起来就是所有可能的方案。
gxgx的转移:首先xx自己可以往上扩展,方案就是fxfx,然后xx还可以选择一个儿子,记这个儿子为yy,匹配方案为gygy,那么剩下的儿子有Πson!=y gson×hnum−1Πson!=y gson×hnum−1种方案,乘起来就是Πgson×hnum−1Πgson×hnum−1由于yy的取值有numnum种选择所以还要乘上numnum。

zjoi2017 仙人掌的更多相关文章

  1. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. bzoj4784 [Zjoi2017]仙人掌

    Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...

  4. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  5. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  6. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  7. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  8. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  9. 【题解】ZJOI2017仙人掌

    感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...

随机推荐

  1. 转--python 中写单例

    原文地址 原文地址2 Python中的单例模式的几种实现方式的及优化 阅读目录(Content) 单例模式 实现单例模式的几种方式 1.使用模块 2.使用装饰器 3.使用类 4.基于__new__方法 ...

  2. postgresql时间处理

    时间取到截取 例:select date_trunc('second', "reportTime") from travel_message limit 10; 结果: 他人博客: ...

  3. Telnet Protocol Specification

    Network Working Group J. Postel Request for Comments: 854 J. Reynolds ISI Obsoletes: NIC 18639 May 1 ...

  4. SpringAOP+注解实现简单的日志管理

    今天在再次深入学习SpringAOP之后想着基于注解的AOP实现日志功能,在面试过程中我们也经常会被问到:假如项目已经上线,如何增加一套日志功能?我们会说使用AOP,AOP也符合开闭原则:对代码的修改 ...

  5. 一文看懂汽车电子ECU bootloader工作原理及开发要点

    随着半导体技术的不断进步(按照摩尔定律),MCU内部集成的逻辑功能外设越来越多,存储器也越来越大.消费者对于汽车节能(经济和法规对排放的要求)型.舒适性.互联性.安全性(功能安全和信息安全)的要求越来 ...

  6. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  7. 出现“error LNK1169: 找到一个或多个多重定义的符号”的原因

    或许,有人真的会这样写程序吧...所以才会碰到如下哥们提出的问题. https://zhidao.baidu.com/question/131426210.html 出现这种问题的原因链接中的最佳答案 ...

  8. java linux ftp问题

    java写的ftp上传类,本地测试环境可以用,阿里云服务器不可用,两者系统均为centos.经过测试,发现appche的ftpclient类不可用,换成sun的ftpclient可以使用.

  9. 重新学习angularjs--第一篇(入门)

    几乎是一年之前,泛泛接触了angularjs,也做了一些项目,但是时至今日,几乎已经忘记了ng的使用,由于业务需要,近日要攻克这座难关,重新学习.会把学习的一些东西拿出来,记录之. angularjs ...

  10. Windows2008 r2 x64下安装FTP工具File Zilla server报错:could not load tls libraries filezilla

    安装file zilla server的时候报错: could not load tls libraries filezilla 搜索了下发现是新版本有这个问题,降低到0.9.43就没这个问题了