Problem

给你一张图,点的权值,边和几个操作:

D x: 删除第x条边

Q x y: 询问包含x的联通块中权值第y大的权值

C x y: 将x这个点的权值改为y

Solution

一看就要离线处理,把所有操作都倒过来

然后删除操作变为加边操作

Notice

记得: 是改完以后再把点一个一个加入Treap中!!

Code

非旋转Treap

#pragma GCC optimize(2)
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 3000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
struct Node
{
int num1, num2, type;
}Q[N + 5];
int point = 0, fa[N + 5], Root[N + 5], T[N + 5], From[N + 5], To[N + 5], Flag[N + 5];
struct node
{
int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
inline void up(int u)
{
Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
}
int Newnode(int v)
{
int u = ++point;
Val[u] = v, Level[u] = rand();
Son[0][u] = Son[1][u] = 0, Size[u] = 1;
return u;
}
int Merge(int X, int Y)
{
if (X * Y == 0) return X + Y;
if (Level[X] < Level[Y])
{
Son[1][X] = Merge(Son[1][X], Y);
up(X); return X;
}
else
{
Son[0][Y] = Merge(X, Son[0][Y]);
up(Y); return Y;
}
}
void Split(int u, int t, int &x, int &y)
{
if (!u)
{
x = y = 0;
return;
}
if (Val[u] <= t) x = u, Split(Son[1][u], t, Son[1][u], y);
else y = u, Split(Son[0][u], t, x, Son[0][u]);
up(u);
}
int Find_num(int u, int v)
{
if (!u) return 0;
if (v <= Size[Son[0][u]]) return Find_num(Son[0][u], v);
else if (v <= Size[Son[0][u]] + 1) return u;
else return Find_num(Son[1][u], v - Size[Son[0][u]] - 1);
}
void Insert(int &u, int v)
{
int t = Newnode(v), x, y;
Split(u, v, x, y);
u = Merge(Merge(x, t), y);
}
void Delete(int &u, int v)
{
int x, y, z;
Split(u, v, x, z), Split(x, v - 1, x, y);
u = Merge(Merge(x, Merge(Son[0][y], Son[1][y])), z);
}
}Treap;
int Find(int x)
{
if (fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
}
void Union(int u, int v)
{
if (Treap.Size[Root[u]] < Treap.Size[Root[v]]) swap(u, v);
while (Treap.Size[Root[v]])
{
int t = Treap.Find_num(Root[v], 1);
Treap.Insert(Root[u], Treap.Val[t]);
Treap.Delete(Root[v], Treap.Val[t]);
}
fa[v] = u;
Root[v] = 0;
}
int sqz()
{
int n, m, cas = 0;
while (~scanf("%d %d", &n, &m) && (n || m))
{
point = 0;
rep(i, 1, n) T[i] = read(), fa[i] = i, Root[i] = 0;
rep(i, 1, m) From[i] = read(), To[i] = read(), Flag[i] = 0;
int q = 0; char op[5];
while (scanf("%s", op) && op[0] != 'E')
{
q++;
if (op[0] == 'D')
Q[q].num1 = read(), Flag[Q[q].num1] = 1, Q[q].type = 0;
else
{
Q[q].num1 = read(), Q[q].num2 = read();
if (op[0] == 'C') swap(T[Q[q].num1], Q[q].num2), Q[q].type = 1;
else Q[q].type = 2;
}
}
rep(i, 1, n) Treap.Insert(Root[i], T[i]);
rep(i, 1, m)
if (!Flag[i])
{
int u = Find(From[i]), v = Find(To[i]);
if (u != v) Union(u, v);
}
ll ans = 0; int tot = 0;
per(i, q, 1)
{
if (Q[i].type == 0)
{
int u = Find(From[Q[i].num1]), v = Find(To[Q[i].num1]);
if (u != v) Union(u, v);
}
else if (Q[i].type == 1)
{
int u = Find(Q[i].num1);
Treap.Delete(Root[u], T[Q[i].num1]);
Treap.Insert(Root[u], Q[i].num2);
T[Q[i].num1] = Q[i].num2;
}
else
{
int u = Find(Q[i].num1);
int t = Treap.Find_num(Root[u], Treap.Size[Root[u]] - Q[i].num2 + 1);
if (t != -INF) ans += Treap.Val[t];
tot++;
}
}
printf("Case %d: %.6f\n", ++cas, ans * 1.0 / tot);
}
return 0;
}

旋转Treap

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 3000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
struct Node
{
int num1, num2, type;
}Q[N + 5];
int point = 0, fa[N + 5], Root[N + 5], T[N + 5], From[N + 5], To[N + 5], Flag[N + 5];
struct node
{
int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
inline void up(int u)
{
Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + Num[u];
}
inline void Newnode(int &u, int v)
{
u = ++point;
Level[u] = rand(), Val[u] = v;
Size[u] = Num[u] = 1, Son[0][u] = Son[1][u] = 0;
}
inline void Lturn(int &x)
{
int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
up(x); up(y); x = y;
}
inline void Rturn(int &x)
{
int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
up(x); up(y); x = y;
} void Insert(int &u, int t)
{
if (u == 0)
{
Newnode(u, t);
return;
}
Size[u]++;
if (t == Val[u]) Num[u]++;
else if (t > Val[u])
{
Insert(Son[0][u], t);
if (Level[Son[0][u]] < Level[u]) Rturn(u);
}
else if (t < Val[u])
{
Insert(Son[1][u], t);
if (Level[Son[1][u]] < Level[u]) Lturn(u);
}
}
void Delete(int &u, int t)
{
if (!u) return;
if (Val[u] == t)
{
if (Num[u] > 1)
{
Num[u]--, Size[u]--;
return;
}
if (Son[0][u] * Son[1][u] == 0) u = Son[0][u] + Son[1][u];
else if (Level[Son[0][u]] < Level[Son[1][u]]) Rturn(u), Delete(u, t);
else Lturn(u), Delete(u, t);
}
else if (t > Val[u]) Size[u]--, Delete(Son[0][u], t);
else Size[u]--, Delete(Son[1][u], t);
} int Find_num(int u, int t)
{
if (!u) return -INF;
if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
else if (t <= Size[Son[0][u]] + Num[u]) return Val[u];
else return Find_num(Son[1][u], t - Size[Son[0][u]] - Num[u]);
}
}Treap;
int Find(int x)
{
if (fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
}
void Union(int u, int v)
{
if (Treap.Size[Root[u]] < Treap.Size[Root[v]]) swap(u, v);
while (Treap.Size[Root[v]])
{
int t = Treap.Find_num(Root[v], 1);
Treap.Insert(Root[u], t);
Treap.Delete(Root[v], t);
}
fa[v] = u;
Root[v] = 0;
}
int sqz()
{
int n, m, cas = 0;
while (~scanf("%d %d", &n, &m) && (n || m))
{
point = 0;
rep(i, 1, n) T[i] = read(), fa[i] = i, Root[i] = 0;
rep(i, 1, m) From[i] = read(), To[i] = read(), Flag[i] = 0;
int q = 0; char op[5];
while (scanf("%s", op) && op[0] != 'E')
{
q++;
if (op[0] == 'D')
Q[q].num1 = read(), Flag[Q[q].num1] = 1, Q[q].type = 0;
else
{
Q[q].num1 = read(), Q[q].num2 = read();
if (op[0] == 'C') swap(T[Q[q].num1], Q[q].num2), Q[q].type = 1;
else Q[q].type = 2;
}
}
rep(i, 1, n) Treap.Insert(Root[i], T[i]);
rep(i, 1, m)
if (!Flag[i])
{
int u = Find(From[i]), v = Find(To[i]);
if (u != v) Union(u, v);
}
ll ans = 0; int tot = 0;
per(i, q, 1)
{
if (Q[i].type == 0)
{
int u = Find(From[Q[i].num1]), v = Find(To[Q[i].num1]);
if (u != v) Union(u, v);
}
else if (Q[i].type == 1)
{
int u = Find(Q[i].num1);
Treap.Delete(Root[u], T[Q[i].num1]);
Treap.Insert(Root[u], Q[i].num2);
T[Q[i].num1] = Q[i].num2;
}
else
{
int u = Find(Q[i].num1);
int t = Treap.Find_num(Root[u], Q[i].num2);
if (t != -INF) ans += t;
tot++;
}
}
printf("Case %d: %.6f\n", ++cas, ans * 1.0 / tot);
}
return 0;
}

[HDU3726]Graph and Queries的更多相关文章

  1. HDU 3726 Graph and Queries 平衡树+前向星+并查集+离线操作+逆向思维 数据结构大综合题

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 3726 Graph and Queries (离线处理+splay tree)

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. [la P5031&hdu P3726] Graph and Queries

    [la P5031&hdu P3726] Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: ...

  4. HDU 3726 Graph and Queries treap树

    题目来源:HDU 3726 Graph and Queries 题意:见白书 思路:刚学treap 參考白皮书 #include <cstdio> #include <cstring ...

  5. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  6. UVALive5031 Graph and Queries(Treap)

    反向操作,先求出最终状态,再反向操作. 然后就是Treap 的合并,求第K大值. #include<cstdio> #include<iostream> #include< ...

  7. UVa 1479 (Treap 名次树) Graph and Queries

    这题写起来真累.. 名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少. 所以在这道题中用一棵名次树来维护一个 ...

  8. uvalive 5031 Graph and Queries 名次树+Treap

    题意:给你个点m条边的无向图,每个节点都有一个整数权值.你的任务是执行一系列操作.操作分为3种... 思路:本题一点要逆向来做,正向每次如果删边,复杂度太高.逆向到一定顺序的时候添加一条边更容易.详见 ...

  9. 【HDOJ】3726 Graph and Queries

    Treap的基础题目,Treap是个挺不错的数据结构. /* */ #include <iostream> #include <string> #include <map ...

随机推荐

  1. Windows上结合使用Flume和Kafka

    Win7+Flume1.8.0 + Kafka1.0.0 1.目标 ①使用Flume作为Kafka的Producer: ②使用Kafka作为Flume的Sink: 其实以上两点是同一个事情在Flume ...

  2. mui体验理解

    1.      mui简介 1.1  缘起 1.基于jq的jqmobile,性能低的无法忍受,且UI难看 2.bootstrap这种响应式设计,性能在低端机不足,而且UI风格一看就是网页,不是App的 ...

  3. python 爬虫利器 Beautiful Soup

    python 爬虫利器 Beautiful Soup Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文 ...

  4. Android SDK无法更新的解决方法

    一.说明: Android 更新sdk时访问google很慢,有时连接不上,可利用国内的某些镜像网站实现Android SDK在线更新. 二.解决方法: 在SDK Manager -> tool ...

  5. python3-知识扩展扫盲易忘-zip的用法

    >>>a = [1,2,3] >>> b = [4,5,6]>>> c = [4,5,6,7,8]>>> zipped = zi ...

  6. Vue.js简单的状态管理和 Vuex的几个核心概念使用。

    由于状态零散地分布在许多组件和组件之间的交互中,大型应用复杂度也经常逐渐增长. 如果多层组件嵌套使用,传递prop,和事件emit.都很不方便. 不方便对数据的修改进行历史记录.影响后续的调试! 为了 ...

  7. centos6 安装python3.5后pip无法使用的处理

    现象:安装pip后发现命令无法识别command not found 原因:which查看找到不到执行路径   find搜索发现安装后存放在/usr/local/python3.5/bin下,于是判断 ...

  8. DFS CCPC2017 南宁I题

    The designers have come up with a new simple game called “Rake It In”. Two players, Alice and Bob, i ...

  9. 6月6 Smarty练习----设置题目及打印试卷

    所需要的数据库表格:shiti, shititimu, timu, kemu, xuanxiang  考试试题的设置: 考试试题后台:ksset.php <?php include(" ...

  10. HTML 5 <span> 标签

    标签定义及使用说明 <span> 用于对文档中的行内元素进行组合. <span> 标签没有固定的格式表现.当对它应用样式时,它才会产生视觉上的变化.如果不对 <span& ...