Problem

给你一张图,点的权值,边和几个操作:

D x: 删除第x条边

Q x y: 询问包含x的联通块中权值第y大的权值

C x y: 将x这个点的权值改为y

Solution

一看就要离线处理,把所有操作都倒过来

然后删除操作变为加边操作

Notice

记得: 是改完以后再把点一个一个加入Treap中!!

Code

非旋转Treap

#pragma GCC optimize(2)
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 3000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
struct Node
{
int num1, num2, type;
}Q[N + 5];
int point = 0, fa[N + 5], Root[N + 5], T[N + 5], From[N + 5], To[N + 5], Flag[N + 5];
struct node
{
int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
inline void up(int u)
{
Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
}
int Newnode(int v)
{
int u = ++point;
Val[u] = v, Level[u] = rand();
Son[0][u] = Son[1][u] = 0, Size[u] = 1;
return u;
}
int Merge(int X, int Y)
{
if (X * Y == 0) return X + Y;
if (Level[X] < Level[Y])
{
Son[1][X] = Merge(Son[1][X], Y);
up(X); return X;
}
else
{
Son[0][Y] = Merge(X, Son[0][Y]);
up(Y); return Y;
}
}
void Split(int u, int t, int &x, int &y)
{
if (!u)
{
x = y = 0;
return;
}
if (Val[u] <= t) x = u, Split(Son[1][u], t, Son[1][u], y);
else y = u, Split(Son[0][u], t, x, Son[0][u]);
up(u);
}
int Find_num(int u, int v)
{
if (!u) return 0;
if (v <= Size[Son[0][u]]) return Find_num(Son[0][u], v);
else if (v <= Size[Son[0][u]] + 1) return u;
else return Find_num(Son[1][u], v - Size[Son[0][u]] - 1);
}
void Insert(int &u, int v)
{
int t = Newnode(v), x, y;
Split(u, v, x, y);
u = Merge(Merge(x, t), y);
}
void Delete(int &u, int v)
{
int x, y, z;
Split(u, v, x, z), Split(x, v - 1, x, y);
u = Merge(Merge(x, Merge(Son[0][y], Son[1][y])), z);
}
}Treap;
int Find(int x)
{
if (fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
}
void Union(int u, int v)
{
if (Treap.Size[Root[u]] < Treap.Size[Root[v]]) swap(u, v);
while (Treap.Size[Root[v]])
{
int t = Treap.Find_num(Root[v], 1);
Treap.Insert(Root[u], Treap.Val[t]);
Treap.Delete(Root[v], Treap.Val[t]);
}
fa[v] = u;
Root[v] = 0;
}
int sqz()
{
int n, m, cas = 0;
while (~scanf("%d %d", &n, &m) && (n || m))
{
point = 0;
rep(i, 1, n) T[i] = read(), fa[i] = i, Root[i] = 0;
rep(i, 1, m) From[i] = read(), To[i] = read(), Flag[i] = 0;
int q = 0; char op[5];
while (scanf("%s", op) && op[0] != 'E')
{
q++;
if (op[0] == 'D')
Q[q].num1 = read(), Flag[Q[q].num1] = 1, Q[q].type = 0;
else
{
Q[q].num1 = read(), Q[q].num2 = read();
if (op[0] == 'C') swap(T[Q[q].num1], Q[q].num2), Q[q].type = 1;
else Q[q].type = 2;
}
}
rep(i, 1, n) Treap.Insert(Root[i], T[i]);
rep(i, 1, m)
if (!Flag[i])
{
int u = Find(From[i]), v = Find(To[i]);
if (u != v) Union(u, v);
}
ll ans = 0; int tot = 0;
per(i, q, 1)
{
if (Q[i].type == 0)
{
int u = Find(From[Q[i].num1]), v = Find(To[Q[i].num1]);
if (u != v) Union(u, v);
}
else if (Q[i].type == 1)
{
int u = Find(Q[i].num1);
Treap.Delete(Root[u], T[Q[i].num1]);
Treap.Insert(Root[u], Q[i].num2);
T[Q[i].num1] = Q[i].num2;
}
else
{
int u = Find(Q[i].num1);
int t = Treap.Find_num(Root[u], Treap.Size[Root[u]] - Q[i].num2 + 1);
if (t != -INF) ans += Treap.Val[t];
tot++;
}
}
printf("Case %d: %.6f\n", ++cas, ans * 1.0 / tot);
}
return 0;
}

旋转Treap

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 3000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
struct Node
{
int num1, num2, type;
}Q[N + 5];
int point = 0, fa[N + 5], Root[N + 5], T[N + 5], From[N + 5], To[N + 5], Flag[N + 5];
struct node
{
int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
inline void up(int u)
{
Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + Num[u];
}
inline void Newnode(int &u, int v)
{
u = ++point;
Level[u] = rand(), Val[u] = v;
Size[u] = Num[u] = 1, Son[0][u] = Son[1][u] = 0;
}
inline void Lturn(int &x)
{
int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
up(x); up(y); x = y;
}
inline void Rturn(int &x)
{
int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
up(x); up(y); x = y;
} void Insert(int &u, int t)
{
if (u == 0)
{
Newnode(u, t);
return;
}
Size[u]++;
if (t == Val[u]) Num[u]++;
else if (t > Val[u])
{
Insert(Son[0][u], t);
if (Level[Son[0][u]] < Level[u]) Rturn(u);
}
else if (t < Val[u])
{
Insert(Son[1][u], t);
if (Level[Son[1][u]] < Level[u]) Lturn(u);
}
}
void Delete(int &u, int t)
{
if (!u) return;
if (Val[u] == t)
{
if (Num[u] > 1)
{
Num[u]--, Size[u]--;
return;
}
if (Son[0][u] * Son[1][u] == 0) u = Son[0][u] + Son[1][u];
else if (Level[Son[0][u]] < Level[Son[1][u]]) Rturn(u), Delete(u, t);
else Lturn(u), Delete(u, t);
}
else if (t > Val[u]) Size[u]--, Delete(Son[0][u], t);
else Size[u]--, Delete(Son[1][u], t);
} int Find_num(int u, int t)
{
if (!u) return -INF;
if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
else if (t <= Size[Son[0][u]] + Num[u]) return Val[u];
else return Find_num(Son[1][u], t - Size[Son[0][u]] - Num[u]);
}
}Treap;
int Find(int x)
{
if (fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
}
void Union(int u, int v)
{
if (Treap.Size[Root[u]] < Treap.Size[Root[v]]) swap(u, v);
while (Treap.Size[Root[v]])
{
int t = Treap.Find_num(Root[v], 1);
Treap.Insert(Root[u], t);
Treap.Delete(Root[v], t);
}
fa[v] = u;
Root[v] = 0;
}
int sqz()
{
int n, m, cas = 0;
while (~scanf("%d %d", &n, &m) && (n || m))
{
point = 0;
rep(i, 1, n) T[i] = read(), fa[i] = i, Root[i] = 0;
rep(i, 1, m) From[i] = read(), To[i] = read(), Flag[i] = 0;
int q = 0; char op[5];
while (scanf("%s", op) && op[0] != 'E')
{
q++;
if (op[0] == 'D')
Q[q].num1 = read(), Flag[Q[q].num1] = 1, Q[q].type = 0;
else
{
Q[q].num1 = read(), Q[q].num2 = read();
if (op[0] == 'C') swap(T[Q[q].num1], Q[q].num2), Q[q].type = 1;
else Q[q].type = 2;
}
}
rep(i, 1, n) Treap.Insert(Root[i], T[i]);
rep(i, 1, m)
if (!Flag[i])
{
int u = Find(From[i]), v = Find(To[i]);
if (u != v) Union(u, v);
}
ll ans = 0; int tot = 0;
per(i, q, 1)
{
if (Q[i].type == 0)
{
int u = Find(From[Q[i].num1]), v = Find(To[Q[i].num1]);
if (u != v) Union(u, v);
}
else if (Q[i].type == 1)
{
int u = Find(Q[i].num1);
Treap.Delete(Root[u], T[Q[i].num1]);
Treap.Insert(Root[u], Q[i].num2);
T[Q[i].num1] = Q[i].num2;
}
else
{
int u = Find(Q[i].num1);
int t = Treap.Find_num(Root[u], Q[i].num2);
if (t != -INF) ans += t;
tot++;
}
}
printf("Case %d: %.6f\n", ++cas, ans * 1.0 / tot);
}
return 0;
}

[HDU3726]Graph and Queries的更多相关文章

  1. HDU 3726 Graph and Queries 平衡树+前向星+并查集+离线操作+逆向思维 数据结构大综合题

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. HDU 3726 Graph and Queries (离线处理+splay tree)

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. [la P5031&hdu P3726] Graph and Queries

    [la P5031&hdu P3726] Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: ...

  4. HDU 3726 Graph and Queries treap树

    题目来源:HDU 3726 Graph and Queries 题意:见白书 思路:刚学treap 參考白皮书 #include <cstdio> #include <cstring ...

  5. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  6. UVALive5031 Graph and Queries(Treap)

    反向操作,先求出最终状态,再反向操作. 然后就是Treap 的合并,求第K大值. #include<cstdio> #include<iostream> #include< ...

  7. UVa 1479 (Treap 名次树) Graph and Queries

    这题写起来真累.. 名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少. 所以在这道题中用一棵名次树来维护一个 ...

  8. uvalive 5031 Graph and Queries 名次树+Treap

    题意:给你个点m条边的无向图,每个节点都有一个整数权值.你的任务是执行一系列操作.操作分为3种... 思路:本题一点要逆向来做,正向每次如果删边,复杂度太高.逆向到一定顺序的时候添加一条边更容易.详见 ...

  9. 【HDOJ】3726 Graph and Queries

    Treap的基础题目,Treap是个挺不错的数据结构. /* */ #include <iostream> #include <string> #include <map ...

随机推荐

  1. 在Windows下解决git ERROR: Permission to XXX.git denied to user

    这种情况一般都是由于登陆了不同的git仓库在本地记录了凭证导致的,比如登陆了两个不同的github账号. 1.控制面板 2.删除凭证再重新提交将会重新输入用户名和密码 以上.

  2. Java中 Tomcat 是干什么的?

    Tomcat是web容器.它的作用稍后给你解释. 你在做web项目时,多数需要http协议,也就是基于请求和响应,比如你在百度输入一行内容搜索, 那么百度服务器如何处理这个请求呢,他需要创建servl ...

  3. Asp.net core 学习笔记 ( IIS, static file 性能优化 )

    更新 : 2019-02-06 最后还是把 rewrite 给替换掉了. 所以 rewrite url 也不依赖 iis 了咯. refer : https://docs.microsoft.com/ ...

  4. spring cloud: Hystrix(三):健康指数 health Indicator

    spring cloud: Hystrix(三):健康指数 health Indicator ribbon+hystrix 当使用Hystrix时(spring-cloud-starter-hystr ...

  5. change color3

    两种方法 第一种 DataGridview1.Rows[i].DefultCellStyle.backcolor 第二种 AlternatingRowsDefutCellstyle 属性 获取或设置应 ...

  6. English Voice of <<All Of Me>>

    "All Of Me"我的一切 [Verse 1:]What would I do without your smart mouth没有你的蜜语甜言,我该怎办Drawing me ...

  7. Single Number II leetcode java

    问题描述: Given an array of integers, every element appears three times except for one. Find that single ...

  8. js字符串转日期兼容性

    今天遇到个bug,安卓上是好的,ios就不行.然后我就把可能用到的值都打印出来,发现日期比较一项在苹果机上就显示false,而谷歌浏览器是true.突然回忆起以前开发遇到过类似的问题,都是出在字符串转 ...

  9. 突破本地离线存储5M限制的JS库localforage简介

    http://www.zhangxinxu.com/wordpress/2018/06/js-localforage-localstorage-indexdb/

  10. leetcode-algorithms-34 Find First and Last Position of Element in Sorted Array

    leetcode-algorithms-34 Find First and Last Position of Element in Sorted Array Given an array of int ...