1.RDD——弹性分布式数据集(Resilient Distributed Dataset)

RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD转换已有的RDD调用RDD操作进行求值

Spark 中的 RDD 就是一个不可变的分布式对象集合。每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。

object WordCount {
def main(args: Array[String]) {
val inputFile = "file:///home/common/coding/coding/Scala/word-count/test.segmented"
val conf = new SparkConf().setAppName("WordCount").setMaster("local")    #创建一个SparkConf对象来配置应用<br>    #集群URL:告诉Spark连接到哪个集群,local是单机单线程,无需连接到集群,应用名:在集群管理器的用户界面方便找到应用
val sc = new SparkContext(conf)        #然后基于这SparkConf创建一个SparkContext对象
val textFile = sc.textFile(inputFile)    #读取输入的数据
val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)  #切分成单词,转换成键值对并计数
wordCount.foreach(println)
}
}

创建一个RDD

val textFile = sc.textFile(inputFile)

或者

val lines = sc.parallelize(List("pandas", "i like pandas"))

RDD支持两种类型的操作: 转化操作(transformation)行动操作(action)

转化操作,是返回一个新的RDD的操作:

filter()函数

val RDD = textFile.filter(line => line.contains("Hadoop"))

map()函数

val input = sc.parallelize(List(1, 2, 3, 4))
val result = input.map(x => x * x)
println(result.collect().mkString(","))

输出

1,4,9,16

map()和flatMap()的区别

    val input1 = sc.parallelize(List("hello world","hi"))
val lines = input1.map(line => line.split(" "))
for(line <- lines)
println(line)  //输出是两个List的地址
val lines_ = input1.flatMap(line => line.split(" "))
for(line_ <- lines_)
println(line_)  //输出是[hello world hi]

行动操作,是向驱动器程序返回结果或把结果写入外部系统的操作,会触发实际的计算:first()、count()、take()、collect()[获取整个RDD中的数据,只有想在本地处理这些数据的时候,才可以使用,因为一般情况下RDD很大]

take()函数

textFile.take(5).foreach(println)

reduce函数,接收一个函数作为参数

val input = sc.parallelize(List(1, 2, 3, 4))
val sum = input.reduce((x, y) => x + y)
println(sum)  //输出1-4的累加和,10

aggregate()函数,计算List的和以及List的元素个数,然后计算平均值

    val input = sc.parallelize(List(1, 2, 3, 4))
val result = input.aggregate((0, 0))(
(acc, value) => (acc._1 + value, acc._2 + 1),
(acc1, acc2) => (acc1._1 + acc2._1, acc1._2 + acc2._2))
val avg = result._1 / result._2.toDouble
println(result)
println(avg)

输出

(10,4)
2.5

对于

val sum1 = input.aggregate((0, 0))((x, y) => (x._1 + y, x._2 + 1), (x, y) => (x._1 + y._1, x._2 + y._2))

输出(10,4)

理解

过程大概这样:

首先,初始值是(0,0),这个值在后面2步会用到。

然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。

    1.   0+1,  0+1

    2.  1+2,  1+1

    3.  3+3,  2+1

    4.  6+4,  3+1

    5.  10+5,  4+1

    6.  15+6,  5+1

    7.  21+7,  6+1

    8.  28+8,  7+1

    9.  36+9,  8+1

结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了。

top()函数,可以返回RDD的前几个元素

fold()函数,和reduce()函数的功能差不多,但是需要提供初始值

val numbers = List(1, 2, 3, 4)
println(
numbers.fold(1) {
(a, b) => a + b
}
)

输出11

转化操作和行动操作的区别:

1.转换操作只会惰性计算这些 RDD

2.行动操作会对 RDD 计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(如 HDFS)中

默认情况下,Spark 的 RDD 会在你每次对它们进行行动操作时重新计算。如果想在多个行动操作中重用同一个 RDD,可以使用 RDD.persist() 让 Spark 把这个 RDD 缓存下来

2.向Spark传递函数

在 Scala 中,我们可以把定义的内联函数、方法的引用或静态方法传递给 Spark。

我们可以把需要的字段放到一个局部变量中,来避免传递包含该字段的整个对象

class SearchFunctions(val query: String) {

    def isMatch(s: String): Boolean = {
s.contains(query)
} def getMatchesFunctionReference(rdd: RDD[String]): RDD[String] = {
// 问题: "isMatch"表示"this.isMatch",因此我们要传递整个"this"
rdd.map(isMatch)
} def getMatchesFieldReference(rdd: RDD[String]): RDD[String] = {
// 问题: "query"表示"this.query",因此我们要传递整个"this"
rdd.map(x => x.split(query))
} def getMatchesNoReference(rdd: RDD[String]): RDD[String] = {
// 安全:只把我们需要的字段拿出来放入局部变量中
val query_ = this.query
rdd.map(x => x.split(query_))
}
}

3.持久化(缓存)

Spark RDD 是惰性求值的,而有时我们希望能多次使用同一个 RDD的时候需要对RDD进行持久化

两次调用行动操作,每次Spark都会重新计算RDD和它的所有依赖

val result = input.map(x => x*x)
println(result.count())
println(result.collect().mkString(","))

使用persist()来进行持久化

val result = input.map(x => x * x)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkString(","))

如果要缓存的数据太多,内存中放不下,Spark 会自动利用最近最少使用(LRU)的缓存策略把最老的分区从内存中移除。

RDD 还有一个方法叫作 unpersist() ,调用该方法可以手动把持久化的 RDD 从缓存中移除。

Spark学习笔记——RDD编程的更多相关文章

  1. Spark学习之RDD编程(2)

    Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RD ...

  2. Spark学习之RDD编程总结

    Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...

  3. Spark学习(2) RDD编程

    什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...

  4. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  5. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  6. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  7. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

  8. Spark学习笔记之SparkRDD

    Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   ...

  9. Spark学习笔记-GraphX-1

    Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明: ...

随机推荐

  1. 什么是less?

    什么是less? 简单的说,你可以在你的css文件中使用变量.函数等方式来编写你的css. less具有哪些功能? 混入(Mixins)——class中的class: 参数混入——可以传递参数的cla ...

  2. 使用Maven自动部署Java Web项目到Tomcat问题小记

    导读 首先说说自己为啥要用maven管理项目,一个直接的原因是:我在自己电脑上开发web项目,每次部署到服务器上时都要经历如下步骤: 首先在Eclipse里将项目打包成war包 将服务器上原来的项目文 ...

  3. Android导入第三方静态库.a编译成动态库.so

    http://ikinglai.blog.51cto.com/6220785/1324985 在Android开发的时候,经常会使用到用c或c++编写的第三方的静态库.如果有源码的话,可以直接跟你自己 ...

  4. Unity3d之截图方法

    http://blog.csdn.net/highning0007/article/details/37991787 Unity3d之截图方法 分类: Unity3D2013-11-28 17:13  ...

  5. normalize.css的使用

    normalize.css有下面这几个目的: 保护有用的浏览器默认样式而不是完全去掉它们一般化的样式:为大部分HTML元素提供修复浏览器自身的bug并保证各浏览器的一致性优化CSS可用性:用一些小技巧 ...

  6. SpringBoot自定义线程池处理异步任务

    @Async异步调用 就不解释什么是异步调用了,Spring Boot中进行异步调用很简单 1.通过使用@Async注解就能简单的将原来的同步函数变为异步函数 package com.winner.s ...

  7. vcs+Makefile实现简单的testbench

    网络上找的文章,实现了一遍. 步骤如下: 1. 创建verilog代码, 包括8位加法器代码和testbench代码. adder8.v module adder8 ( input clk, inpu ...

  8. PHP ~与各加速工具的性能对比~

    参与测试的加速器:Xcache,Opcache,hhvm   Xcache简介 前面已经介绍了PHP加速器的原理和功用(参见LAMP架构之PHP-FPM 服务器),xcache作为目前使用广泛的PHP ...

  9. GDALSetProjection使用的一个注意事项

    GDALSetProjection 简述 GDALSetProjection是用来给GDALDataset设定投影信息(坐标系统)的接口,实际上是GDALDataset::SetProjection这 ...

  10. C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)

    前面八章介绍了 C++11 并发编程的基础(抱歉哈,第五章-第八章还在草稿中),本文将综合运用 C++11 中的新的基础设施(主要是多线程.锁.条件变量)来阐述一个经典问题——生产者消费者模型,并给出 ...