题面:

题目背景:

HKE带着 $ n $ 个小朋友做游戏

题目描述:

现在有n个座位编号为 $ 1 $ 至 $ n $ ,这些小朋友也编号 $ 1 $ 至 $ n $ 。一开始所有小朋友都坐在相应的座位上。HKE的游戏可用一个n的排列 $ A(A_1,A_2\cdots A_n $ )表示。一轮游戏时,对于所有的 $ 1\leq i\leq n $ ,坐在位置 $ i $ 上的小朋友坐到位置 $ A_i $ 上

现在游戏进行了 $ k $ 轮,HKE想知道游戏结束后,位置 $ 1,2\cdots n $ 分别坐了几号小朋友?

输入格式:

第一行 $ n,k $ 。

第二行 $ A_1,A_2\cdots A_n $

输出格式:

一行n个数表示 k 轮游戏后坐在位置 $ 1,2……n $ 上的小朋友的编号

输入样例#1:

5 5
2 3 1 5 4

输出样例#1:

2 3 1 5 4

输入样例#2:

5 4
2 3 1 5 4

输出样例#2:

3 1 2 4 5

数据范围:

30%的数据, $ n\leq1000 $ , $ k\leq1000 $

100%的数据, $ n\leq100000 $ , $ k\leq2^{31}-1 $

本题 $ solution $ :

首先请允许我奶一波:本题出的是真的好!

某蒟蒻心路历程:

小文:这不是矩阵快速幂裸题吗?!!

题面:矩阵快速幂复杂度 $ n^3 $ OK?

小文:那就降到二维 $ n^2 $ 优化麻!!!

题面:.... $ n\leq100000 $ ,are you sure?

小文:我 &% $ &#%&#% !!!!!!!

于是乎让我再仔细看看题目吧:

解 1 :跑图论求环

我们(在脑海里)建一个图,将第 i 步的结果与第 i+1 步的结果用一条边连起来,跑一遍你会发现这是一个环(即你不断转换下去会回到你的初始状态。所以你将 k mod 一下环的大小( $ \leq n $ )然后跑一遍图即可。(稍稍维护一下复杂度)

这对蒟蒻来说太难了,于是就没有代码实现了

解 2 :快速幂

这题其实不存在矩阵成分(有启发效果),重点在与快速幂和你的转移过程

原理:

1.转移的结合律:

下文中但凡以 2 3 1 5 4(一个栗子)为标准转移,2 3 1 5 4 分别表示 $ A_1 $ $ A_2 $ $ A_3 $ $ .... $ $ A_5 $ :

转移的实现:

inline void ans(){ //给ans数组转换
for(rg i=1;i<=n;++i) c[i]=a[i];
for(rg i=1;i<=n;++i) a[b[i]]=c[i];
}

对于一个以 2 3 1 5 4 为标准的转移,我们若转移两次,就相当于进行一次以 3 1 2 4 5 为标准的转移(不信试试);而我们若转移 3 次,就相当于先进行一次以 3 1 2 4 5 为标准的转移在进行一次以 2 3 1 5 4 为标准的转移。这说明小朋友换位置具有结合律,这是我们快速幂的基础。

而 3 1 2 4 5 是可以通过 2 3 1 5 4 推出来的(类似矩阵乘法):

$ \begin{vmatrix}2 &3&1&4&5\\2&3&1&4&5\|&|&|&|&|\\3&1&2&4&5\end{vmatrix} $ $

看的出怎么推吗:先讲一下 3 是如何来的:

首先 3 的意义表示 1 号小朋友在转移两次后在 3 号位置。所以我们看到 1 号小朋友第一轮转换时要转换到 2 号位置,而第二轮转换时 2 号位置的人要转换到 3 号位置,所以就相当于一号小朋友在转移两次后要在 3 号位置。 1 2 4 5 也是这样得来的:实现:

inline void base(){ //给bese数组转换
for(rg i=1;i<=n;++i) c[i]=b[i];
for(rg i=1;i<=n;++i) b[i]=c[c[i]];
}

而此时如果我们需要以2 3 1 4 5为标准转移 4 次,就可以直接以 3 1 2 4 5为标准转移两次即可。同样我们还可以用 3 1 2 4 5来推出一个序列,以次序列为标准转移就能直接得到以2 3 1 4 5转移 4 次的结果。

然后直接快速幂求解即可!

代码实现:

以某一转换序列来推出下一个转换序列,我们用base函数实现。

以某一序列为标准转移,我们用ans函数实现。(这两个不一样!!

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#define rg register int using namespace std; int n,k;
int b[100001];// base
int a[100001];// answer
int c[100001];// 借来转换赋值 inline int qr(){ char ch; // 快读
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} inline void ans(){ //给ans数组转换
for(rg i=1;i<=n;++i) c[i]=a[i];
for(rg i=1;i<=n;++i) a[b[i]]=c[i];//重点1
} inline void base(){ //给bese数组转换
for(rg i=1;i<=n;++i) c[i]=b[i];
for(rg i=1;i<=n;++i) b[i]=c[c[i]];//重点2
} int main(){
n=qr();k=qr();
for(rg i=1;i<=n;++i)
b[i]=qr(),a[i]=i;//赋初值
while(k){
if(k&1)ans();
base();k>>=1;
}// 快速幂
for(rg i=1;i<=n;++i)
printf("%d ",a[i]);//输出ans
return 0;
}

本题重在理解,码量其实不高(除去快读等....

$ O_{(n\log{n})} $ 的复杂度加上码量还是很优秀的。

注:题目来源:华南师范大学附属中学,洛谷Noip热身赛

HKE和他的小朋友(矩乘快速幂)的更多相关文章

  1. [poj3735] Training little cats_矩乘快速幂

    Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...

  2. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

  3. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

  4. BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘

    2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...

  5. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

  6. POJ3233 Matrix Power Series(快速幂求等比矩阵和)

    题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...

  7. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  8. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  9. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

随机推荐

  1. Java之JSON操作(Jackson)

    Java to JSON: package json.jackson; import bean.User; import com.fasterxml.jackson.databind.ObjectMa ...

  2. i3 窗口管理器使 Linux 更美好

    导读 Linux(和一般的开源软件)最美好的一点是自由 —— 可以在不同的替代方案中进行选择以满足我们的需求. 我使用 Linux 已经很长时间了,但我从来没有对可选用的桌面环境完全满意过.直到去年, ...

  3. Scala常用命令

    :q    退出控制台 控制台换行    空格 + 回车

  4. BZOJ1419Red is good——概率DP

    题目描述 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. 输入 一行输入两个数R,B ...

  5. MT【47】求一道分式的最值

    评:技巧性很大,需要敏锐的洞察力通过柯西不等式把分母变成一样.请记住这个变形$$(a+b+ab+1)=(a+1)(b+1)\le\sqrt{(a^2+1)(b^2+1)}$$

  6. 自学Linux Shell11.2-echo命令

    点击返回 自学Linux命令行与Shell脚本之路 11.2-echo命令 echo命令的功能是在显示器上显示一段文字,一般起到一个提示的作用. 语 法:echo [-n][字符串]或 echo [- ...

  7. 洛谷 P2420 让我们异或吧 解题报告

    P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...

  8. luogu4933 大师 (dp)

    记f[i][j]是以i号为结尾的.公差为j的的个数(不包括只有i的情况) 那么就有$f[i][i-i']=\sum{(f[i'][i-i']+1)}$之类的东西 最后再加个n就行啦 而且公差有可能有负 ...

  9. activity中访问内部fragment的函数

    @Override public void onActivityResult(int requestCode, int resultCode, Intent data) { if (resultCod ...

  10. 洛谷P3233 世界树

    题意:给定树上k个关键点,每个点属于离他最近,然后编号最小的关键点.求每个关键点管辖多少点. 解:虚树 + DP. 虚树不解释.主要是DP.用二元组存虚树上每个点的归属和距离.这一部分是二次扫描与换根 ...