题目链接

闻本题有格子,且何谓格子也

\(Description\)

给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一。

\(Q\)次询问。每次询问一个子矩形内蓝格子组成的连通块数。

\(Solution\)

不会形成环,即一个连通块是一棵树,即点数=边数+1。

那么对于一个子矩形,求它里面的蓝格子数n和蓝格子之间的边数m,n-m就是连通块数了。

横边竖边分开,都用前缀和维护。

如果有环,则边数>=点数就没法做了。

//89ms	52864KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2005; int sp[N][N],sr[N][N]/*crosswise*/,sc[N][N]/*lengthways*/;
bool mp[N][N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int n=read(),m=read(),Q=read();
for(int i=1; i<=n; ++i)
{
register char c=gc(); for(;!isdigit(c);c=gc());
mp[i][1]=c-'0';
for(int j=2; j<=m; mp[i][j++]=gc()-'0');
}
for(int i=1; i<=n; ++i)
for(int j=1; j<=m; ++j)
{
if(mp[i][j])
sp[i][j]=sp[i-1][j]+sp[i][j-1]-sp[i-1][j-1]+1,
sc[i][j]=sc[i-1][j]+sc[i][j-1]-sc[i-1][j-1]+mp[i-1][j],
sr[i][j]=sr[i-1][j]+sr[i][j-1]-sr[i-1][j-1]+mp[i][j-1];
else
sp[i][j]=sp[i-1][j]+sp[i][j-1]-sp[i-1][j-1],
sc[i][j]=sc[i-1][j]+sc[i][j-1]-sc[i-1][j-1],
sr[i][j]=sr[i-1][j]+sr[i][j-1]-sr[i-1][j-1];
}
for(int x,y,x2,y2; Q--; )
{
x=read(),y=read(),x2=read(),y2=read();
int p=sp[x2][y2]-sp[x-1][y2]-sp[x2][y-1]+sp[x-1][y-1],
e=sr[x2][y2]-sr[x-1][y2]-sr[x2][y]+sr[x-1][y]+sc[x2][y2]-sc[x][y2]-sc[x2][y-1]+sc[x][y-1];
printf("%d\n",p-e);
}
return 0;
}

AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)的更多相关文章

  1. Nuske vs Phantom Thnook

    Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...

  2. AtCoder:C - Nuske vs Phantom Thnook

    C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...

  3. AGC015 C Nuske vs Phantom Thnook(前缀和)

    题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...

  4. AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook

    题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...

  5. [agc015c]nuske vs phantom thnook

    题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...

  6. C - Nuske vs Phantom Thnook

    题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...

  7. [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook

    题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...

  8. 「AT2381 [AGC015C] Nuske vs Phantom Thnook」

    题目大意 给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数. 分析 ...

  9. Atcoder C - Nuske vs Phantom Thnook(递推+思维)

    题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...

随机推荐

  1. Linux mmc framework2:基本组件之block

    1.前言 本文主要block组件的主要流程,在介绍的过程中,将详细说明和block相关的流程,涉及到其它组件的详细流程再在相关文章中说明. 2.主要数据结构和API 2.1 struct mmc_ca ...

  2. vim常用命令总结 (转)【转】

    转自:https://www.cnblogs.com/yangjig/p/6014198.html 在命令状态下对当前行用== (连按=两次), 或对多行用n==(n是自然数)表示自动缩进从当前行起的 ...

  3. jvm系列五、jvm垃圾回收机制、jvm各种参数及调优

    转载自:http://yufenfei.iteye.com/blog/1746914 尊重原创. 一.GC有两种类型:Scavenge GC 和Full GC 1.Scavenge GC 一般情况下, ...

  4. 执行update语句mysql5.6报错ERROR 1292 (22007): Truncated incorrect DOUBLE value: '糖糖的坤大叔'

    执行修改语句update tbl_user_details set nickname=CONCAT("用户",yunva_id) where nickname = yunva_id ...

  5. 深入对比TOML,JSON和YAML

    坦率地说,在我开始与Hugo TOML合作之前,我感到羞耻是一个需要发现的新领域,但我对YAML和JSON非常熟悉.本文将帮助您了解如何通过不同的数据格式构建数据.       在Hugo中,您可以将 ...

  6. 100以内奇偶数(for循环)

  7. oracle中REGEXP_SUBSTR方法的使用

    近期在做商旅机票平台,遇到这样一个问题: 有一张tt_ticket表,用来存机票信息.里边有一个字段叫schedule,表示的是行程,存储格式为:北京/虹桥 由于公司位于上海.而上海眼下有两个机场:浦 ...

  8. 采用busybox 代替android 自带的shell

    折腾了几天,被Android那点儿少得可怜的shell命令折磨的死去活来,终于下定了革命的决心.看一下怎么把渺小的toolbox替换成伟大的busybox吧.先大致描述一下Android系统中的she ...

  9. LeetCode(50):Pow(x, n)

    Medium! 题目描述: 实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10 输出: 1024.00000 示例 2: 输入: 2.10000, ...

  10. Velocity.js初识

    Velocity.js官网:http://julian.com/research/velocity/ 兼容IE8和Android2.3 Velocity.js基本用法 效果图: CSS .box{ w ...