BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)
题目链接
各种zz错误。。简直了
/*
19604kb 36292ms
题意:选$k$段不相交的区间,使其权值和最大。
朴素线段树:线段树上每个点维护O(k)个信息,区间合并时O(k^2),总O(mk^2logn)->GG
考虑费用流:建一条n+1个点的链(点权设在边上,故需n+1个点),链上每个点和S、T连边,相邻点连边
这样数列中的区间和每条增广路一一对应
每次最多增广k次,O(nmk)->still GG
考虑费用流这一过程的实质:每次增广相当于贪心,本质上只有两种情况:
选取一段(新增一个区间)、从已选的某个区间中删除一段
使用线段树实现这个贪心过程,支持(单点修改、)区间查询最大子段和(选取)、区间取反(相当于删除)
这样每次查询修改k次,最后把修改逐一复原
O(mklogn)
注: 1.需要维护一个区间最小值,因为取反后原区间最小值就成了最大值
2.用堆式存储要更好,因为查找最大子段和需要得到位置,这样直接返回一个结构体
(1)根节点是0
(2)另外用Merge代替Update可以方便地用在Query()中 (好吧其实再写个函数无所谓)
(3)如果存左右儿子的话别忘了合并时也改掉 and tag..
3.重载'+'后左右两运算数不要反
4.Reverse()必须一次到完整区间,因为上边的节点需要下边的完整信息(脑补)
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define gc() getchar()
const int N=1e5+5;
int n,m,tp;
//char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
struct Node
{
struct Node2
{
int l,r,val;
inline friend Node2 operator +(const Node2 &x,const Node2 &y)
{
Node2 tmp;
tmp.l=x.l, tmp.r=y.r, tmp.val=x.val+y.val;
return tmp;
}
inline friend bool operator <(const Node2 &x,const Node2 &y)
{
return x.val<y.val;
}
}sum,lmn,rmn,lmx,smx,smn,rmx;
int ls,rs;
bool tag;
inline void Init(int p,int v)
{
sum.val=lmx.val=rmx.val=lmn.val=rmn.val=smx.val=smn.val=v,
sum.l=lmx.l=rmx.l=lmn.l=rmn.l=smx.l=smn.l=p;
sum.r=lmx.r=rmx.r=lmn.r=rmn.r=smx.r=smn.r=p;
ls=rs=-1, tag=0;
}
}node[N<<1],sk[30];
struct Seg_Tree
{
int tot;
Node Merge(const Node &x,const Node &y)
{
Node rt;
// printf("%d,%d(%d,%d) %d,%d(%d,%d)\n",x.smx.val,y.smx.val,x.smx.l,y.smx.r,x.rmx.val,y.lmx.val,x.rmx.l,y.lmx.r);
rt.lmx=std::max(x.lmx,x.sum+y.lmx);
rt.rmx=std::max(y.rmx,x.rmx+y.sum);//!
rt.lmn=std::min(x.lmn,x.sum+y.lmn);
rt.rmn=std::min(y.rmn,x.rmn+y.sum);
rt.smx=std::max(x.rmx+y.lmx,std::max(x.smx,y.smx));
rt.smn=std::min(x.rmn+y.lmn,std::min(x.smn,y.smn));
rt.sum=x.sum+y.sum;
rt.tag=0;//!
return rt;
}
void Rev(int rt)
{
node[rt].tag^=1;
std::swap(node[rt].lmx,node[rt].lmn), std::swap(node[rt].rmx,node[rt].rmn),
std::swap(node[rt].smx,node[rt].smn),
node[rt].lmx.val*=-1, node[rt].lmn.val*=-1,
node[rt].rmx.val*=-1, node[rt].rmn.val*=-1,
node[rt].smx.val*=-1, node[rt].smn.val*=-1,
node[rt].sum.val*=-1;
}
inline void PushDown(int rt)
{
Rev(node[rt].ls), Rev(node[rt].rs);
node[rt].tag=0;
}
void Build(int l,int r)
{
int p=tot++;
if(l==r) {node[p].Init(l,read()),node[p].ls=node[p].rs=-1; return;}
int m=l+r>>1;
node[p].ls=tot, Build(l,m),
node[p].rs=tot, Build(m+1,r);
int ls=node[p].ls,rs=node[p].rs;
node[p]=Merge(node[ls],node[rs]);
node[p].ls=ls, node[p].rs=rs;
// printf("%d:%d~%d mx:%d(%d~%d) sum:%d\n",p+1,l,r,node[p].smx.val,node[p].smx.l,node[p].smx.r,node[p].sum.val);
}
void Modify(int l,int r,int rt,int p,int v)
{
if(l==r) {node[rt].Init(l,v); return;}
if(node[rt].tag) PushDown(rt);
int m=l+r>>1,ls=node[rt].ls,rs=node[rt].rs;
if(p<=m) Modify(l,m,ls,p,v);
else Modify(m+1,r,rs,p,v);
node[rt]=Merge(node[ls],node[rs]);
node[rt].ls=ls, node[rt].rs=rs;
}
void Reverse(int l,int r,int rt,int L,int R)
{
if(L==l && r==R) {Rev(rt); return;}//!
if(node[rt].tag) PushDown(rt);
int m=l+r>>1,ls=node[rt].ls,rs=node[rt].rs;
if(L<=m)//!
if(m<R) Reverse(l,m,ls,L,m),Reverse(m+1,r,rs,m+1,R);
else Reverse(l,m,ls,L,R);
else Reverse(m+1,r,rs,L,R);
node[rt]=Merge(node[ls],node[rs]);
node[rt].ls=ls, node[rt].rs=rs;
}
Node Query(int l,int r,int rt,int L,int R)
{
// WR: if(L<=l && r<=R) return node[rt];
if(L==l && r==R) return node[rt];//!
if(node[rt].tag) PushDown(rt);
int m=l+r>>1;
if(L<=m)//!
if(m<R) return Merge(Query(l,m,node[rt].ls,L,m),Query(m+1,r,node[rt].rs,m+1,R));
else return Query(l,m,node[rt].ls,L,R);
else return Query(m+1,r,node[rt].rs,L,R);
}
// void Print(int l,int r,int p)
// {
// if(l==r) return;
// if(node[p].tag) PushDown(p);
// int m=l+r>>1;
// Print(l,m,node[p].ls),
// printf("P:%d:%d~%d mx:%d(%d~%d) sum:%d\n",p+1,l,r,node[p].smx.val,node[p].smx.l,node[p].smx.r,node[p].sum.val);
// Print(m+1,r,node[p].rs);
// }
}t;
int main()
{
#ifndef ONLINE_JUDGE
freopen("3638.in","r",stdin);
#endif
n=read();
t.Build(1,n);//t.Print(1,n,0);
m=read();
int opt,p,k,l,r,res; Node pos;
while(m--)
{
opt=read();
if(!opt) p=read(),k=read(),t.Modify(1,n,0,p,k);
else
{
l=read(),r=read(),k=read(),res=0;
while(k--)
{
pos=t.Query(1,n,0,l,r);
// printf("%d~%d val:%d\n",pos.smx.l,pos.smx.r,pos.smx.val);
if(pos.smx.val<0) break;
res+=pos.smx.val;
sk[++tp]=pos;//反转前先入栈
t.Reverse(1,n,0,pos.smx.l,pos.smx.r);//t.Print(1,n,0);
}
printf("%d\n",res);
while(tp)
t.Reverse(1,n,0,sk[tp].smx.l,sk[tp].smx.r),--tp;
// t.Print(1,n,0);
}
}
return 0;
}
BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)的更多相关文章
- 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并
题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...
- BZOJ 3836 Codeforces 280D k-Maximum Subsequence Sum (模拟费用流、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=3836 (Codeforces) http://codeforces.com ...
- Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]
洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...
- BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树
题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...
- CF280D-k-Maximum Subsequence Sum【模拟费用流,线段树】
正题 题目链接:https://www.luogu.com.cn/problem/CF280D 题目大意 一个长度为\(n\)的序列,\(m\)次操作 修改一个数 询问一个区间中选出\(k\)段不交子 ...
- BZOJ2040[2009国家集训队]拯救Protoss的故乡——模拟费用流+线段树+树链剖分
题目描述 在星历2012年,星灵英雄Zeratul预测到他所在的Aiur行星在M天后会发生持续性暴雨灾害,尤其是他们的首都.而Zeratul作为星灵族的英雄,当然是要尽自己最大的努力帮助星灵族渡过这场 ...
- BZOJ 1920 Luogu P4217 [CTSC2010]产品销售 (模拟费用流、线段树)
题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=1920 (luogu) https://www.luogu.org/prob ...
- Maximum Subsequence Sum【最大连续子序列+树状数组解决】
Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...
- BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图
Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...
随机推荐
- ARMV8 datasheet学习笔记3:AArch64应用级体系结构
1.前言 本文主要从应用的角度介绍ARMV8的编程模型和存储模型 2. AArch64应用级编程模型 从应用的角度看到的ARM处理器元素: 可见的元素(寄存器/指令) 说明 可见的寄存器 R0-R30 ...
- UML和模式应用4:初始阶段(3)--需求制品之用例模型
1. 前言 UP开发包括四个阶段:初始阶段.细化阶段.构建阶段.移交阶段: UP每个阶段包括 业务建模.需求.设计等科目: 其中需求科目对应的需求制品包括:设想.业务规则.用例模型.补充性规格说明.词 ...
- Python3学习笔记15-迭代器与生成器
生成器 如果创建一个有很多元素的列表,但是只需要访问前几个元素,后面的元素占着的空间就白白浪费了 在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间. 在Pytho ...
- python2.7源码或第三方包里埋藏的坑(持续更新)
1.psutil包,aix环境下,如果进程命令过长的话,程序无法取得完整的进程命令,测试代码如下 import psutil proc=psutil.Process(11534558) pidDict ...
- vim使用案例
1. 请在 /tmp 这个目录下建立一个名为 vitest 的目录: 2. 进入 vitest 这个目录当中: 3. 将 /etc/man.config 复制到本目录底下(或由上述的连结下载 man. ...
- ECLIPSE 导入外部文件或源码包
步骤: 点击Project->Properties->Libraries->Add External Class Folder.. ->选择你的文件路径->确定 注:如果 ...
- hdu3255扫描线:带权面积交转体积交
手贱把i打成j,调了半天 /* 面积并转体积并,长方体高度为作物价格 算体积并:在笛卡尔坐标系的y轴上建立线段树cnt记录区间被完全覆盖的次数,sum记录区间被覆盖的总长度 以平行于xoy的平面从下往 ...
- SPLAY,LCT学习笔记(四)
前三篇好像变成了SPLAY专题... 这一篇正式开始LCT! 其实LCT就是基于SPLAY的伸展操作维护树(森林)连通性的一个数据结构 核心操作有很多,我们以一道题为例: 例:bzoj 2049 洞穴 ...
- Python中的各种转义符\n\r\t
转义符 描述 \ 续行符(在行尾时) \\ 反斜杠符号 ' 单引号 " 双引号 \a 响铃 \b 退格(Backspace) \e 转义 \000 空 \n 换行 \v 纵向制表符 \t 横 ...
- Mac下Eclipse读取不到环境变量
问题: 用Eclipse时候读取不到 ~/.bash_profile 下定义的环境变量,确切的说,是GUI应用读取不到终端的(如eclipse) 解决: 1,下载启动代理器: curl https:/ ...