[LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆
转载:https://leetcode.windliang.cc/leetCode-23-Merge-k-Sorted-Lists.html
描述
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example:
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6
k 个有序链表的合并。
我们用 N 表示链表的总长度,考虑最坏情况,k 个链表的长度相等,都为 n 。
解法一 暴力破解
简单粗暴,遍历所有的链表,将数字存到一个数组里,然后用快速排序,最后再将排序好的数组存到一个链表里。
public ListNode mergeKLists(ListNode[] lists) {
List<Integer> l = new ArrayList<Integer>();
//存到数组
for (ListNode ln : lists) {
while (ln != null) {
l.add(ln.val);
ln = ln.next;
}
}
//数组排序
Collections.sort(l);
//存到链表
ListNode head = new ListNode(0);
ListNode h = head;
for (int i : l) {
ListNode t = new ListNode(i);
h.next = t;
h = h.next;
}
h.next = null;
return head.next;
}
时间复杂度:假设 N 是所有的数字个数,存到数组是 O(N),排序如果是用快速排序就是 O(Nlog_N),存到链表是 O(N),所以取个最大的,就是 O(Nlog_N)。
空间复杂度:新建了一个链表,O(N)。
解法二 一列一列比较
我们可以一列一列的比较,将最小的一个存到一个新的链表里。
public ListNode mergeKLists(ListNode[] lists) {
int min_index = 0;
ListNode head = new ListNode(0);
ListNode h = head;
while (true) {
boolean isBreak = true;//标记是否遍历完所有链表
int min = Integer.MAX_VALUE;
for (int i = 0; i < lists.length; i++) {
if (lists[i] != null) {
//找出最小下标
if (lists[i].val < min) {
min_index = i;
min = lists[i].val;
}
//存在一个链表不为空,标记改完 false
isBreak = false;
} }
if (isBreak) {
break;
}
//加到新链表中
ListNode a = new ListNode(lists[min_index].val);
h.next = a;
h = h.next;
//链表后移一个元素
lists[min_index] = lists[min_index].next;
}
h.next = null;
return head.next;
}
时间复杂度:假设最长的链表长度是 n ,那么 while 循环将循环 n 次。假设链表列表里有 k 个链表,for 循环执行 k 次,所以时间复杂度是 O(kn)。
空间复杂度:N 表示最终链表的长度,则为 O(N)。
其实我们不需要创建一个新链表保存,我们只需要改变得到的最小结点的指向就可以了。
public ListNode mergeKLists(ListNode[] lists) {
int min_index = 0;
ListNode head = new ListNode(0);
ListNode h = head;
while (true) {
boolean isBreak = true;
int min = Integer.MAX_VALUE;
for (int i = 0; i < lists.length; i++) {
if (lists[i] != null) {
if (lists[i].val < min) {
min_index = i;
min = lists[i].val;
}
isBreak = false;
} }
if (isBreak) {
break;
}
//最小的节点接过来
h.next = lists[min_index];
h = h.next;
lists[min_index] = lists[min_index].next;
}
h.next = null;
return head.next;
}
时间复杂度:假设最长的链表长度是 n ,那么 while 循环将循环 n 次。假设链表列表里有 k 个链表,for 循环执行 k 次,所以时间复杂度是 O(kn)。
空间复杂度:O(1)。
解法三 优先队列
解法二中,我们每次都是取出一个最小的,然后加入一个新的, O(1)的复杂度,再找最小的,O(k) 的复杂度。我们完全可以用一个优先队列。
我们将优先级定义为数越小优先级越高,如果用堆实现优先队列,这样我们每次找最小不再需要 O(k),而是 O(log(k)),当然这样的话,我们加入新的话不再是 O(1),也需要 O(log(k))。可以看看这里和这里。
public ListNode mergeKLists(ListNode[] lists) {
//定义优先队列的比较器
Comparator<ListNode> cmp;
cmp = new Comparator<ListNode>() {
@Override
public int compare(ListNode o1, ListNode o2) {
// TODO Auto-generated method stub
return o1.val-o2.val;
}
}; //建立队列
Queue<ListNode> q = new PriorityQueue<ListNode>(cmp);
for(ListNode l : lists){
if(l!=null){
q.add(l);
}
}
ListNode head = new ListNode(0);
ListNode point = head;
while(!q.isEmpty()){
//出队列
point.next = q.poll();
point = point.next;
//判断当前链表是否为空,不为空就将新元素入队
ListNode next = point.next;
if(next!=null){
q.add(next);
}
}
return head.next;
}
时间复杂度:while 循环依旧取决于最长的链表长度 n,while 循环里边,如果有 k 个链表,入队出队都需要 log(k),除此之外还有初始化队列的时间复杂度 O(k)。所以时间复杂度是 O(min(k,nlog(k)))。
空间复杂度:优先队列需要 O(k)的复杂度。
解法四 两两合并
利用之前合并两个链表的算法,我们直接两两合并,第 0 个和第 1 个链表合并,新生成的再和第 2 个链表合并,新生成的再和第 3 个链表合并...直到全部合并完。
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode h = new ListNode(0);
ListNode ans=h;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
h.next = l1;
h = h.next;
l1 = l1.next;
} else {
h.next = l2;
h = h.next;
l2 = l2.next;
}
}
if(l1==null){
h.next=l2;
}
if(l2==null){
h.next=l1;
}
return ans.next;
}
public ListNode mergeKLists(ListNode[] lists) {
if(lists.length==1){
return lists[0];
}
if(lists.length==0){
return null;
}
ListNode head = mergeTwoLists(lists[0],lists[1]);
for (int i = 2; i < lists.length; i++) {
head = mergeTwoLists(head,lists[i]);
}
return head;
}
时间复杂度:不妨假设是 k 个链表并且长度相同,链表总长度为 N,那么第一次合并就是 N/k 和 N/k ,第二次合并就是 2 * N/k 和 N/k,第三次合并就是 3 * N/k 和 N / k,总共进行 n - 1 次合并,每次合并的时间复杂度是 O(n),所以总时间复杂度就是O(\sum_{i=1}^{k-1}(i*\frac{N}{k}+\frac{N}{k}))=O(kN)O(∑i=1k−1(i∗kN+kN))=O(kN),可以将两项分开,N/k 其实是常数,分开的第一项是等差数列。
空间复杂度:O(1)。
解法五 两两合并优化
依旧假设是 k 个链表,合并的过程优化下,使得只需要合并 log(k)次。
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode h = new ListNode(0);
ListNode ans=h;
while (l1 != null && l2 != null) {
if (l1.val < l2.val) {
h.next = l1;
h = h.next;
l1 = l1.next;
} else {
h.next = l2;
h = h.next;
l2 = l2.next;
}
}
if(l1==null){
h.next=l2;
}
if(l2==null){
h.next=l1;
}
return ans.next;
}
public ListNode mergeKLists(ListNode[] lists) {
if(lists.length==0){
return null;
}
int interval = 1;
while(interval<lists.length){
System.out.println(lists.length);
for (int i = 0; i + interval< lists.length; i=i+interval*2) {
lists[i]=mergeTwoLists(lists[i],lists[i+interval]);
}
interval*=2;
} return lists[0];
}
时间复杂度:假设每个链表的长度都是 n ,那么时间复杂度就是O(\sum_{i=1}^{log_2k}n)=O(nlogk)O(∑i=1log2kn)=O(nlogk)。
空间复杂度:O(1)。
总结
优先队列的运用印象深刻,此外对两两链表的合并,我们仅仅改变了合并的方式就将时间复杂度降低了很多,美妙!
[LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆的更多相关文章
- 蜗牛慢慢爬 LeetCode 23. Merge k Sorted Lists [Difficulty: Hard]
题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...
- [LeetCode] 23. Merge k Sorted Lists 合并k个有序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
- [leetcode 23]Merge k Sorted Lists
1 题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexi ...
- LeetCode 23 Merge k Sorted Lists(合并k个有序链表)
题目链接: https://leetcode.com/problems/merge-k-sorted-lists/?tab=Description Problem: 给出k个有序的list, 将其进行 ...
- Java [leetcode 23]Merge k Sorted Lists
题目描述: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complex ...
- [leetcode]23. Merge k Sorted Lists归并k个有序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. I ...
- [LeetCode] 23. Merge k Sorted Lists ☆☆
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...
- [LeetCode]23. Merge k Sorted Lists合并K个排序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
- leetcode 23. Merge k Sorted Lists(堆||分治法)
Merge k sorted linked lists and return it as one sorted list. 题意:把k个已经排好序的链表整合到一个链表中,并且这个链表是排了序的. 题解 ...
随机推荐
- #ifndef/#define/#endif使用详解
问题: 想必很多人都看过"头文件中的 #ifndef/#define/#endif 防止该头文件被重复引用".但是是否能理解"被重复引用"是什么意思?是不能在不 ...
- for循环 Dictionary
Dictionary<string, string> dic = new Dictionary<string, string>(); dic.Add("1" ...
- VirtualBox安装Centos6.8出现——E_INVALIDARG (0x80070057)
VirtualBox使用已有的虚拟硬盘出错: 问题描述:UUID已经存在 Cannot register the hard disk 'E:\system_iso\centos6.8.vdi' {05 ...
- 【BZOJ】3209: 花神的数论题
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3209 显然是按照二进制位进行DP. 考虑预处理$F[i][j]$表示到了二进制的第$i$位 ...
- PHP Warning: Module 'memcache' already loaded in Unknown on line 0
出现类似PHP Warning: Module * already loaded in Unknown on line 0,一般是可能因为升级php导致的组件重复加载,解决就是 1.vi /etc/p ...
- Windows 下使用virtualenv 第一次使用flask
前几天在Windows下virtualenv 了一个名为 venv的目录,然后,今天差点忘了怎么进去虚拟环境. 发现在创建虚拟环境的venv目录下有个Scripts目录,里面有一堆 名为activat ...
- rpm命令参数(转载)
rpm 执行安装包 二进制包(Binary)以及源代码包(Source)两种.二进制包可以直接安装在计算机中,而源代码包将会由RPM自动编译.安装.源代码包经常以src.rpm作为后缀名. 还不清楚具 ...
- xpath是什么(入门教程)
xpath是什么(入门教程) 一.总结 一句话总结:一句话,XPath 是一门在 XML 文档中查找信息的语言.简单来说,html类似于xml结构,但是没有xml格式那么严格. 在xml中查找信息 包 ...
- springmvc如何进行热部署开发
1.场景还原 在工程量大的情况下,tomcat运行部署一次会花费相当多的时间,这样太 浪费人力以及时间了:今天笔者将 讲解一下如何配置springmvc工程的热部署 2.实现方案 其实很简单! ①在t ...
- Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...