from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc
#import matplotlib
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import date2num
import datetime
import numpy as np
from pandas import DataFrame
from numpy import row_stack,column_stack df=ts.get_hist_data('',start='2016-06-15',end='2017-11-06')
dd=df[['open','high','low','close']] #print(dd.values.shape[0]) dd1=dd .sort_index() dd2=dd1.values.flatten() g1=dd2[::-1] g2=g1[0:120] g3=g2[::-1] gg=DataFrame(g3) gg.T.to_excel('gg.xls') #dd3=pd.DataFrame(dd2)
#dd3.T.to_excel('d8.xls') g=dd2[0:140]
for i in range(dd.values.shape[0]-34): s=dd2[i*4:i*4+140]
g=row_stack((g,s)) fg=DataFrame(g) print(fg)
fg.to_excel('fg.xls') #-*- coding: utf-8 -*-
#建立、训练多层神经网络,并完成模型的检验
#from __future__ import print_function
import pandas as pd inputfile1='fg.xls' #训练数据
testoutputfile = 'test_output_data.xls' #测试数据模型输出文件
data_train = pd.read_excel(inputfile1) #读入训练数据(由日志标记事件是否为洗浴)
data_mean = data_train.mean()
data_std = data_train.std()
data_train1 = (data_train-data_mean)/5 #数据标准化 y_train = data_train1.iloc[:,120:140].as_matrix() #训练样本标签列
x_train = data_train1.iloc[:,0:120].as_matrix() #训练样本特征
#y_test = data_test.iloc[:,4].as_matrix() #测试样本标签列 from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation model = Sequential() #建立模型
model.add(Dense(input_dim = 120, output_dim = 240)) #添加输入层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 240, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 120)) #添加隐藏层、隐藏层的连接
model.add(Activation('relu')) #以Relu函数为激活函数
model.add(Dense(input_dim = 120, output_dim = 20)) #添加隐藏层、输出层的连接
model.add(Activation('sigmoid')) #以sigmoid函数为激活函数
#编译模型,损失函数为binary_crossentropy,用adam法求解
model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x_train, y_train, nb_epoch = 100, batch_size = 8) #训练模型
model.save_weights('net.model') #保存模型参数 inputfile2='gg.xls' #预测数据
pre = pd.read_excel(inputfile2) pre_mean = data_mean[0:120]
pre_std = pre.std()
pre1 = (pre-pre_mean)/5 #数据标准化 pre2 = pre1.iloc[:,0:120].as_matrix() #预测样本特征
r = pd.DataFrame(model.predict(pre2))
rt=r*5+data_mean[120:140].as_matrix()
print(rt.round(2)) rt.to_excel('rt.xls') #print(r.values@data_train.iloc[:,116:120].std().values+data_mean[116:120].as_matrix()) a=list(df.index[0:-1]) b=a[0] c= datetime.datetime.strptime(b,'%Y-%m-%d') d = date2num(c) c1=[d+i+1 for i in range(5)]
c2=np.array([c1]) r1=rt.values.flatten()
r2=r1[0:4]
for i in range(4): r3=r1[i*4+4:i*4+8]
r2=row_stack((r2,r3)) c3=column_stack((c2.T,r2))
r5=DataFrame(c3) if len(c3) == 0:
raise SystemExit fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2) #ax.xaxis.set_major_locator(mondays)
#ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter) #plot_day_summary(ax, quotes, ticksize=3)
candlestick_ohlc(ax, c3, width=0.6, colorup='r', colordown='g') ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right') ax.grid(True)
#plt.title('000002')
plt.show()

【转】基于keras 的神经网络股价预测模型的更多相关文章

  1. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  2. 基于双向BiLstm神经网络的中文分词详解及源码

    基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...

  3. 基于 Keras 用深度学习预测时间序列

    目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 T ...

  4. 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速

    这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...

  5. 解析基于keras深度学习框架下yolov3的算法

    一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架 ...

  6. keras搭建神经网络快速入门笔记

    之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...

  7. [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

    这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...

  8. [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)

    [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88) 个人主页--> https://xiaosongshine.github.io/ 项目g ...

  9. CIKM 18 | 蚂蚁金服论文:基于异构图神经网络的恶意账户识别方法

    小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Managemen ...

随机推荐

  1. Python 进程的其他方法

    import time import os from multiprocessing import Process def f1(): print("子进程的pid",os.get ...

  2. python实现的简单点对点(p2p)聊天

    点对点聊天首先是基于多线程的网络编程,其次就是将每一个连接都保存为一个具有独一属性的对象并添加到连接列表中,对于每一个连接对象发送过来的信息必须要包含主要的三项内容(from,to,messages) ...

  3. Electron_01

    1.通过 https://electron.atom.io/  下载  electron-v1.4.15-win32-x64.zip 之后 2.通过 asar pack “你的项目文件夹” app.a ...

  4. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  5. spring 事务控制 设置手动回滚 TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();

    //假设这是一个service类的片段 try{ //出现异常 } catch (Exception e) { e.printStackTrace(); //设置手动回滚 TransactionAsp ...

  6. SpringdataJpa的官方API学习

    (将对Springdata JPA的API  第三章之后进行解释) 一 .  Core concepts(核心概念) 1.springdata中的中心接口是——Repository.这个接口没有什么重 ...

  7. JavaScript Dom基础-9-Dom查找方法; 设置DOM元素的样式; innerHTML属性的应用; className属性的应用; DOM元素上添加删除获取属性;

    JavaScript Dom基础 学习目标 1.掌握基本的Dom查找方法 domcument.getElementById() Domcument.getElementBy TagName() 2.掌 ...

  8. poj 1236 强联通分量

    大致题意给你有一个点数为n<=100的有向图. 求解两个子任务: 1:最少给多少个点信息,这些点的信息可以顺着有向边传遍全图. 2:最少要加多少条边,使得整个图强联通. 求强联通分量再缩点后得到 ...

  9. Gym.102059: 2018-2019 XIX Open Cup, Grand Prix of Korea(寒假gym自训第一场)

    整体来说,这一场的质量比较高,但是题意也有些难懂. E.Electronic Circuit 题意:  给你N个点,M根线,问它是否是一个合法的电路. 思路:  一个合法的电路,经过一些串联并联关系, ...

  10. Sublime Text3:插件+快捷键+环境变量设置+C/C++编译环境

    环境变量配置 如果电脑里之前下载过Codeblocks或者Dev,找到文件根目录,打开MinGw(或者MinGw64),点开bin目录,将bin文件夹的目录复制下来(以Codeblocks为例,将文件 ...