最近为了方便开发,在自己的虚拟机上搭建了三节点的Hadoop集群与Hbase集群,hadoop集群的搭建与zookeeper集群这里就不再详细说明,原来的笔记中记录过。这里将hbase配置参数进行相应整理,方便日后使用。

首先vi ~/.bash_profile将hbase的环境变量进行配置,最后source ~./bash_profile使之立即生效

1、修改hbase-env.sh

  由于我使用的是外置的zookeeper,所以这里HBASE_MANAGES_ZK设置为,设置参数:

# The java implementation to use.  Java 1.7+ required.
export JAVA_HOME=/usr/local/yangsy/jdk1.7.0_55 # Extra Java CLASSPATH elements. Optional.
export HBASE_CLASSPATH=/usr/local/hbase-1.0.2/conf # Tell HBase whether it should manage it's own instance of Zookeeper or not.
export HBASE_MANAGES_ZK=false

2、修改hbase-site.xml

<configuration> 
//设置将数据写入hdfs的目录
<property>
<name>hbase.rootdir</name>
<value>hdfs://master:9000/usr/local/hadoop-2.6.0/hbaseData</value>
</property>
//设置hbase模式为集群模式
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
//设置hbase的master端口地址
<property>
<name>hbase.master</name>
<value>hdfs://master:60000</value>
</property>
//HBase Master web界面绑定的端口,默认为0.0.0.0
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>
//连接zookeeper的端口设置
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2183</value>
</property>
//设置zookeeper的连接地址(必须为基数个)
<property>
<name>hbase.zookeeper.quorum</name>
<value>master,slave1,slave2</value>
</property>
//Zookeeper的zoo.conf中的路径配置,快照的存储位置
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/usr/local/zookeeper-3.4.6/data</value>
</property>
//Zookeeper连接超时时间
<property>
<name>zookeeper.session.timeout</name>
<value>60000</value>
</property> </configuration>

这里要注意的是,如果选择外置的zookeeper集群,则需要将zookeeper的zoo.cfg拷贝至HBase的conf下。在启动HBase时,将会自动加载该配置文件。同时,如果hadoop为ha集群的话,需要将core-site.xml以及hdfs-site.xml拷贝到hbase的conf下,否则启动后regionServer会报unknownhost.

3、修改regionservers

slave1
slave2

4、启动hadoop集群、zookeeper集群以及Hbase

首先要确保zkeeper是否正常启动 在zookeeper bin目录下使用./zkServer.sh status查看状态

5、查看HBase master启动是否报错

6、查看各slave节点reginserver是否报错

6、看来启动成功,可以后续愉快的玩耍了

最后查阅了Hbase相关配置参数,这里进行总结,以便日后熟练后调优

hbase.rootdir

这个目录是region  server的共享目录,用来持久化Hbase。URL需要是'完全正确'的,还要包含文件系统的scheme。例如,要表示hdfs中的 '/hbase'目录,namenode  运行在namenode.example.org的9090端口。则需要设置为hdfs://namenode.example.org:9000 /hbase。默认情况下Hbase是写到/tmp的。不改这个配置,数据会在重启的时候丢失。

默认: file:///tmp/hbase-${user.name}/hbase

hbase.master.port

Hbase的Master的端口.

默认: 60000

hbase.cluster.distributed

Hbase的运行模式。false是单机模式,true是分布式模式。若为false,Hbase和Zookeeper会运行在同一个JVM里面。

默认: false

hbase.tmp.dir

本地文件系统的临时文件夹。可以修改到一个更为持久的目录上。(/tmp会在重启时清楚)

默认: /tmp/hbase-${user.name}

hbase.master.info.port

HBase Master web 界面端口.     设置为-1 意味着你不想让他运行。

默认: 60010

hbase.master.info.bindAddress

HBase Master web 界面绑定的端口

默认: 0.0.0.0

hbase.client.write.buffer

HTable 客户端的写缓冲的默认大小。这个值越大,需要消耗的内存越大。因为缓冲在客户端和服务端都有实例,所以需要消耗客户端和服务端两个地方的内存。得到的好处 是,可以减少RPC的次数。可以这样估算服务器端被占用的内存: hbase.client.write.buffer *  hbase.regionserver.handler.count

默认: 2097152

hbase.regionserver.port

HBase RegionServer绑定的端口

默认: 60020

hbase.regionserver.info.port

HBase RegionServer web 界面绑定的端口     设置为 -1 意味这你不想与运行 RegionServer 界面.

默认: 60030

hbase.regionserver.info.port.auto

Master或RegionServer是否要动态搜一个可以用的端口来绑定界面。当hbase.regionserver.info.port已经被占用的时候,可以搜一个空闲的端口绑定。这个功能在测试的时候很有用。默认关闭。

默认: false

hbase.regionserver.info.bindAddress

HBase RegionServer web 界面的IP地址

默认: 0.0.0.0

hbase.regionserver.class

RegionServer 使用的接口。客户端打开代理来连接region server的时候会使用到。

默认: org.apache.hadoop.hbase.ipc.HRegionInterface

hbase.client.pause

通常的客户端暂停时间。最多的用法是客户端在重试前的等待时间。比如失败的get操作和region查询操作等都很可能用到。

默认: 1000

hbase.client.retries.number

最大重试次数。例如 region查询,Get操作,Update操作等等都可能发生错误,需要重试。这是最大重试错误的值。

默认: 10

hbase.client.scanner.caching

当 调用Scanner的next方法,而值又不在缓存里的时候,从服务端一次获取的行数。越大的值意味着Scanner会快一些,但是会占用更多的内存。当 缓冲被占满的时候,next方法调用会越来越慢。慢到一定程度,可能会导致超时。例如超过了 hbase.regionserver.lease.period。

默认: 1

hbase.client.keyvalue.maxsize

一 个KeyValue实例的最大size.这个是用来设置存储文件中的单个entry的大小上界。因为一个KeyValue是不能分割的,所以可以避免因为 数据过大导致region不可分割。明智的做法是把它设为可以被最大region  size整除的数。如果设置为0或者更小,就会禁用这个检查。默认10MB。

默认: 10485760

hbase.regionserver.lease.period

客户端租用HRegion server 期限,即超时阀值。单位是毫秒。默认情况下,客户端必须在这个时间内发一条信息,否则视为死掉。

默认: 60000

hbase.regionserver.handler.count

RegionServers受理的RPC Server实例数量。对于Master来说,这个属性是Master受理的handler数量

默认: 10

hbase.regionserver.msginterval

RegionServer 发消息给 Master 时间间隔,单位是毫秒

默认: 3000

hbase.regionserver.optionallogflushinterval

将Hlog同步到HDFS的间隔。如果Hlog没有积累到一定的数量,到了时间,也会触发同步。默认是1秒,单位毫秒。

默认: 1000

hbase.regionserver.regionSplitLimit

region的数量到了这个值后就不会在分裂了。这不是一个region数量的硬性限制。但是起到了一定指导性的作用,到了这个值就该停止分裂了。默认是MAX_INT.就是说不阻止分裂。

默认: 2147483647

hbase.regionserver.logroll.period

提交commit log的间隔,不管有没有写足够的值。

默认: 3600000

hbase.regionserver.hlog.reader.impl

HLog file reader 的实现.

默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogReader

hbase.regionserver.hlog.writer.impl

HLog file writer 的实现.

默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogWriter

hbase.regionserver.thread.splitcompactcheckfrequency

region server 多久执行一次split/compaction 检查.

默认: 20000

hbase.regionserver.nbreservationblocks

储备的内存block的数量(译者注:就像石油储备一样)。当发生out of memory 异常的时候,我们可以用这些内存在RegionServer停止之前做清理操作。

默认: 4

hbase.zookeeper.dns.interface

当使用DNS的时候,Zookeeper用来上报的IP地址的网络接口名字。

默认: default

hbase.zookeeper.dns.nameserver

当使用DNS的时候,Zookeepr使用的DNS的域名或者IP 地址,Zookeeper用它来确定和master用来进行通讯的域名.

默认: default

hbase.regionserver.dns.interface

当使用DNS的时候,RegionServer用来上报的IP地址的网络接口名字。

默认: default

hbase.regionserver.dns.nameserver

当使用DNS的时候,RegionServer使用的DNS的域名或者IP 地址,RegionServer用它来确定和master用来进行通讯的域名.

默认: default

hbase.master.dns.interface

当使用DNS的时候,Master用来上报的IP地址的网络接口名字。

默认: default

hbase.master.dns.nameserver

当使用DNS的时候,RegionServer使用的DNS的域名或者IP 地址,Master用它来确定用来进行通讯的域名.

默认: default

hbase.balancer.period     

Master执行region balancer的间隔。

默认: 300000

hbase.regions.slop

当任一regionserver有average + (average * slop)个region是会执行Rebalance

默认: 0

hbase.master.logcleaner.ttl

Hlog存在于.oldlogdir 文件夹的最长时间,     超过了就会被 Master 的线程清理掉.

默认: 600000

hbase.master.logcleaner.plugins

LogsCleaner 服务会执行的一组LogCleanerDelegat。值用逗号间隔的文本表示。这些WAL/HLog  cleaners会按顺序调用。可以把先调用的放在前面。你可以实现自己的LogCleanerDelegat,加到Classpath下,然后在这里写 下类的全称。一般都是加在默认值的前面。

默认: org.apache.hadoop.hbase.master.TimeToLiveLogCleaner

hbase.regionserver.global.memstore.upperLimit

单个region server的全部memtores的最大值。超过这个值,一个新的update操作会被挂起,强制执行flush操作。

默认: 0.4

hbase.regionserver.global.memstore.lowerLimit

当强制执行flush操作的时候,当低于这个值的时候,flush会停止。默认是堆大小的 35% .      如果这个值和 hbase.regionserver.global.memstore.upperLimit 相同就意味着当update操作因为内存限制被挂起时,会尽量少的执行flush(译者注:一旦执行flush,值就会比下限要低,不再执行)

默认: 0.35

hbase.server.thread.wakefrequency

service工作的sleep间隔,单位毫秒。 可以作为service线程的sleep间隔,比如log roller.

默认: 10000

hbase.hregion.memstore.flush.size

当memstore的大小超过这个值的时候,会flush到磁盘。这个值被一个线程每隔hbase.server.thread.wakefrequency检查一下。

默认: 67108864

hbase.hregion.preclose.flush.size

当一个region中的memstore的大小大于这个值的时候,我们又触发了close.会先运行“pre-flush”操作,清理这个需要关闭的 memstore,然后将这个region下线。当一个region下线了,我们无法再进行任何写操作。如果一个memstore很大的时候,flush 操作会消耗很多时间。"pre-flush"操作意味着在region下线之前,会先把memstore清空。这样在最终执行close操作的时 候,flush操作会很快。

默认: 5242880

hbase.hregion.memstore.block.multiplier

如果memstore有hbase.hregion.memstore.block.multiplier倍数的 hbase.hregion.flush.size的大小,就会阻塞update操作。这是为了预防在update高峰期会导致的失控。如果不设上 界,flush的时候会花很长的时间来合并或者分割,最坏的情况就是引发out of  memory异常。(译者注:内存操作的速度和磁盘不匹配,需要等一等。原文似乎有误)

默认: 2

hbase.hregion.memstore.mslab.enabled

体验特性:启用memStore分配本地缓冲区。这个特性是为了防止在大量写负载的时候堆的碎片过多。这可以减少GC操作的频率。(GC有可能会Stop the world)(译者注:实现的原理相当于预分配内存,而不是每一个值都要从堆里分配)

默认: false

hbase.hregion.max.filesize

最大HStoreFile大小。若某个Column families的HStoreFile增长达到这个值,这个Hegion会被切割成两个。       Default: 256M.

默认: 268435456

hbase.hstore.compactionThreshold

当一个HStore含有多于这个值的HStoreFiles(每一个memstore flush产生一个HStoreFile)的时候,会执行一个合并操作,把这HStoreFiles写成一个。这个值越大,需要合并的时间就越长。

默认: 3

hbase.hstore.blockingStoreFiles

当一个HStore含有多于这个值的HStoreFiles(每一个memstore flush产生一个HStoreFile)的时候,会执行一个合并操作,update会阻塞直到合并完成,直到超过了hbase.hstore.blockingWaitTime的值

默认: 7

hbase.hstore.blockingWaitTime

hbase.hstore.blockingStoreFiles所限制的StoreFile数量会导致update阻塞,这个时间是来限制阻塞时间的。当超过了这个时间,HRegion会停止阻塞update操作,不过合并还有没有完成。默认为90s.

默认: 90000

hbase.hstore.compaction.max

每个“小”合并的HStoreFiles最大数量。

默认: 10

hbase.hregion.majorcompaction

一个Region中的所有HStoreFile的major compactions的时间间隔。默认是1天。 设置为0就是禁用这个功能。

默认: 86400000

hbase.mapreduce.hfileoutputformat.blocksize

MapReduce 中HFileOutputFormat可以写 storefiles/hfiles. 这个值是hfile的blocksize的最小值。通常在Hbase写Hfile的时候,bloocksize是由table  schema(HColumnDescriptor)决定的,但是在mapreduce写的时候,我们无法获取schema中blocksize。这个值 越小,你的索引就越大,你随机访问需要获取的数据就越小。如果你的cell都很小,而且你需要更快的随机访问,可以把这个值调低。

默认: 65536

hfile.block.cache.size

分配给HFile/StoreFile的block cache占最大堆(-Xmx setting)的比例。默认是20%,设置为0就是不分配。

默认: 0.2

hbase.hash.type

哈希函数使用的哈希算法。可以选择两个值:: murmur (MurmurHash) 和 jenkins (JenkinsHash).     这个哈希是给 bloom filters用的.

默认: murmur

hbase.master.keytab.file

HMaster server验证登录使用的kerberos keytab 文件路径。(译者注:Hbase使用Kerberos实现安全)

默认:

hbase.master.kerberos.principal

例如. "hbase/_HOST@EXAMPLE.COM".  HMaster运行需要使用 kerberos principal name.  principal name 可以在: user/hostname@DOMAIN 中获取. 如果 "_HOST" 被用做hostname     portion,需要使用实际运行的hostname来替代它。

默认:

hbase.regionserver.keytab.file

HRegionServer验证登录使用的kerberos keytab 文件路径。

默认:

hbase.regionserver.kerberos.principal

例如. "hbase/_HOST@EXAMPLE.COM".  HRegionServer运行需要使用 kerberos principal name.  principal name 可以在: user/hostname@DOMAIN 中获取. 如果 "_HOST" 被用做hostname     portion,需要使用实际运行的hostname来替代它。在这个文件中必须要有一个entry来描述 hbase.regionserver.keytab.file

默认:

zookeeper.session.timeout

ZooKeeper   会话超时.Hbase把这个值传递改zk集群,向他推荐一个会话的最大超时时间。详见http://hadoop.apache.org /zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions       "The client sends a requested timeout, the server responds with  the       timeout that it can give the client. "。       单位是毫秒

默认: 180000

zookeeper.znode.parent

ZooKeeper中的Hbase的根ZNode。所有的Hbase的ZooKeeper会用这个目录配置相对路径。默认情况下,所有的Hbase的ZooKeeper文件路径是用相对路径,所以他们会都去这个目录下面。

默认: /hbase

zookeeper.znode.rootserver

ZNode  保存的 根region的路径. 这个值是由Master来写,client和regionserver 来读的。如果设为一个相对地址,父目录就是  ${zookeeper.znode.parent}.默认情形下,意味着根region的路径存储在/hbase/root-region- server.

默认: root-region-server

hbase.zookeeper.quorum

Zookeeper 集群的地址列表,用逗号分割。例 如:"host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".默认是 localhost,是给伪分布式用的。要修改才能在完全分布式的情况下使用。如果在hbase-env.sh设置了HBASE_MANAGES_ZK, 这些ZooKeeper节点就会和Hbase一起启动。

默认: localhost

hbase.zookeeper.peerport

ZooKeeper节点使用的端口。详细参见:http://hadoop.apache.org/zookeep ... ReplicatedZooKeeper

默认: 2888

hbase.zookeeper.leaderport

ZooKeeper用来选择Leader的端口,详细参见:http://hadoop.apache.org/zookeep ... ReplicatedZooKeeper

默认: 3888

hbase.zookeeper.property.initLimit

ZooKeeper的zoo.conf中的配置。 初始化synchronization阶段的ticks数量限制

默认: 10

hbase.zookeeper.property.syncLimit

ZooKeeper的zoo.conf中的配置。 发送一个请求到获得承认之间的ticks的数量限制

默认: 5

hbase.zookeeper.property.dataDir

ZooKeeper的zoo.conf中的配置。     快照的存储位置

默认: ${hbase.tmp.dir}/zookeeper

hbase.zookeeper.property.clientPort

ZooKeeper的zoo.conf中的配置。 客户端连接的端口

默认: 2181

hbase.zookeeper.property.maxClientCnxns

ZooKeeper的zoo.conf中的配置。 ZooKeeper集群中的单个节点接受的单个Client(以IP区分)的请求的并发数。这个值可以调高一点,防止在单机和伪分布式模式中出问题。

默认: 2000

hbase.rest.port

HBase REST server的端口

默认: 8080

hbase.rest.readonly

定义REST server的运行模式。可以设置成如下的值:     false: 所有的HTTP请求都是被允许的 - GET/PUT/POST/DELETE.     true:只有GET请求是被允许的

默认: false

HBase API代码运行

随着搭好的集群进行各种测试。。。练习下HBase API

package HbaseTest;

import akka.io.Tcp;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.*;
import org.apache.hadoop.hbase.client.*; import java.util.ArrayList;
import java.util.List; /**
* Created by root on 5/30/16.
*/
public class HbaseTest {
private Configuration conf;
public void init(){
conf = HBaseConfiguration.create();
} public void createTable(){
Connection conn = null;
try{
conn = ConnectionFactory.createConnection(conf);
HBaseAdmin hadmin = (HBaseAdmin)conn.getAdmin();
HTableDescriptor desc = new HTableDescriptor("TableName".valueOf("yangsy")); desc.addFamily(new HColumnDescriptor("f1"));
if(hadmin.tableExists("yangsy")){
System.out.println("table is exists!");
System.exit(0);
}else{
hadmin.createTable(desc);
System.out.println("create table success");
}
}catch (Exception e){
e.printStackTrace();
}finally {
{
if(null != conn){
try{
conn.close();
}catch(Exception e){
e.printStackTrace();
}
}
}
}
} public void query(){
Connection conn = null;
HTable table = null;
ResultScanner scan = null;
try{
conn = ConnectionFactory.createConnection(conf);
table = (HTable)conn.getTable(TableName.valueOf("yangsy")); scan = table.getScanner(new Scan()); for(Result rs : scan){
System.out.println("rowkey:" + new String(rs.getRow())); for(Cell cell : rs.rawCells()){
System.out.println("column:" + new String(CellUtil.cloneFamily(cell))); System.out.println("columnQualifier:"+new String(CellUtil.cloneQualifier(cell))); System.out.println("columnValue:" + new String(CellUtil.cloneValue(cell))); System.out.println("----------------------------");
}
}
}catch(Exception e){
e.printStackTrace();
}finally{
try {
table.close();
if(null != conn) {
conn.close();
}
}catch (Exception e){
e.printStackTrace();
}
}
} public void queryByRowKey(){
Connection conn = null;
ResultScanner scann = null;
HTable table = null;
try {
conn = ConnectionFactory.createConnection(conf);
table = (HTable)conn.getTable(TableName.valueOf("yangsy")); Result rs = table.get(new Get("1445320222118".getBytes()));
System.out.println("yangsy the value of rokey:1445320222118");
for(Cell cell : rs.rawCells()){
System.out.println("family" + new String(CellUtil.cloneFamily(cell)));
System.out.println("value:"+new String(CellUtil.cloneValue(cell)));
}
}catch (Exception e){
e.printStackTrace();
}finally{
if(null != table){
try{
table.close();
}catch (Exception e){
e.printStackTrace();
}
}
}
} public void insertData(){
Connection conn = null;
HTable hTable = null;
try{
conn = ConnectionFactory.createConnection(conf);
hTable = (HTable)conn.getTable(TableName.valueOf("yangsy")); Put put1 = new Put(String.valueOf("1445320222118").getBytes()); put1.addColumn("f1".getBytes(),"Column_1".getBytes(),"123".getBytes());
put1.addColumn("f1".getBytes(),"Column_2".getBytes(),"456".getBytes());
put1.addColumn("f1".getBytes(),"Column_3".getBytes(),"789".getBytes()); Put put2 = new Put(String.valueOf("1445320222119").getBytes()); put2.addColumn("f1".getBytes(),"Column_1".getBytes(),"321".getBytes());
put2.addColumn("f1".getBytes(),"Column_2".getBytes(),"654".getBytes());
put2.addColumn("f1".getBytes(),"Column_3".getBytes(),"987".getBytes()); List<Put> puts = new ArrayList<Put>();
puts.add(put1);
puts.add(put2);
hTable.put(puts);
}catch(Exception e){
e.printStackTrace();
}finally{
try {
if (null != hTable) {
hTable.close();
}
}catch(Exception e){
e.printStackTrace();
}
}
} public static void main(String args[]){
HbaseTest test = new HbaseTest();
test.init();
test.createTable();
test.insertData();
test.query();
} }

Hbase集群搭建及所有配置调优参数整理及API代码运行的更多相关文章

  1. HBase集群搭建

    HBase集群搭建 搭建环境:假设我们的linux环境已经准备好,包括网络.JDK.防火墙.主机名.免密登录等都没有问题,而且一定要有zookeeper.下面我们用3台linux虚拟机来搭建Hbase ...

  2. Hadoop+HBase 集群搭建

    Hadoop+HBase 集群搭建 1. 环境准备 说明:本次集群搭建使用系统版本Centos 7.5 ,软件版本 V3.1.1. 1.1 配置说明 本次集群搭建共三台机器,具体说明下: 主机名 IP ...

  3. 高可用Hadoop平台-HBase集群搭建

    1.概述 今天补充一篇HBase集群的搭建,这个是高可用系列遗漏的一篇博客,今天抽时间补上,今天给大家介绍的主要内容目录如下所示: 基础软件的准备 HBase介绍 HBase集群搭建 单点问题验证 截 ...

  4. Hadoop集群搭建-02安装配置Zookeeper

    Hadoop集群搭建-05安装配置YARN Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hado ...

  5. Hadoop集群搭建-05安装配置YARN

    Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hadoop集群搭建-01前期准备 先保证集群5台虚 ...

  6. Hadoop集群搭建-04安装配置HDFS

    Hadoop集群搭建-05安装配置YARN Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hado ...

  7. hadoop作业调优参数整理及原理

    hadoop作业调优参数整理及原理 10/22. 2013 1 Map side tuning参数 1.1 MapTask运行内部原理 当map task开始运算,并产生中间数据时,其产生的中间结果并 ...

  8. 大数据中HBase集群搭建与配置

    hbase是分布式列式存储数据库,前提条件是需要搭建hadoop集群,需要Zookeeper集群提供znode锁机制,hadoop集群已经搭建,参考 Hadoop集群搭建 ,该文主要介绍Zookeep ...

  9. 基于centos6.5 hbase 集群搭建

    注意本章内容是在上一篇文章“基于centos6.5 hadoop 集群搭建”基础上创建的 1.上传hbase安装包 hbase-0.96.2-hadoop2 我的目录存放在/usr/hadoop/hb ...

随机推荐

  1. uva 1151(最小生成树,枚举子集)

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐,可以 ...

  2. Windows Store App 文件选取器

    使用文件选取器可以访问除上面介绍的"应用程序存储"和"用户库"两个位置之外的本地文件或者文件夹.文件选取器是应用与系统进行交互的一个接口,通过文件选取器可以在应 ...

  3. PHP中file_put_contents追加时换行

    很多时候记录日志需要换行.不建议使用\r\n,因为:在windows中\r\n是换行在Mac中\r是换行在Liunx中\n是换行 但是PHP提供了一个常量来匹配不同的操作系统,即: file_put_ ...

  4. android布局学习之相对布局(RelativeLayout)

    移通152余继彪 RelativeLayout可以设置某一个视图相对于其他视图的位置,这些位置可以包括上下左右等 RelativeLayout    属性  说明 android:layout_bel ...

  5. dom自定义属性 兼容 index值获取

    function getIndex(Eve,obj){ for(var i = 0;i<obj.length;i++){ obj[i].setAttribute("index" ...

  6. python leetcode 日记--Maximal Square--221

    题目: Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ...

  7. Swift语言—有趣的字符串连接、数组、字典

    字符串链接:Swift语言中的字符串连接方式本人觉得非常的有趣,变量连接需要用右斜杠,并且变量名要括起来 “\(变量名)”,后面的字符串连接分别用逗号 ‘ , ’ 隔开 数组: Var arr = [ ...

  8. Similarity-based Learning

    Similarity-based approaches to machine learning come from the idea that the best way to make a predi ...

  9. Notes of learning AutoLayout

    在XCode5中,如果我们添加一个Button或者Label,或者其他的什么标准View,而不设置任何constraints,IB会自动生成constraints,而这些constraints是fix ...

  10. springmvc学习第三天

    利用spring mvc 实现crud 1.导入jar包 commons-logging-1.2.jarjstl.jarspring-aop-4.1.6.RELEASE.jarspring-beans ...