/
/
/
/
/
/
/
/
/
/ 在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,
最终答案为2,显然是不对的,然而如果建立了反向弧4->2,则第二次能进行1->3->4->2->5->6的增广,最大流为3.

 #include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
typedef long long LL; using namespace std;
int n,m;
#define inf 100000000
#define MAXN 5000
#define MAXN1 50
struct edg
{
int w,to,next;
}x[MAXN+];
int head[MAXN1],cnt;
int vis[MAXN1]; void add(int u,int v,int w)
{
x[cnt].next=head[u];
x[cnt].to=v;
x[cnt].w=w;
head[u]=cnt++;
x[cnt].next=head[v];
x[cnt].to=u;
x[cnt].w=;
head[v]=cnt++;
}
queue<int>q1; int bfs() //层次网络
{
memset(vis,-,sizeof(vis));
vis[]=;
q1.push();
while(!q1.empty())
{
int now=q1.front();
q1.pop();
int j;
for(j=head[now];j!=-;j=x[j].next)
{
if(vis[x[j].to]<&&x[j].w)
{
vis[x[j].to]=vis[now]+;
q1.push(x[j].to);
}
}
}
if(vis[n]<) //汇点不在网络 结束
return ;
return ;
}
int dfs(int u,int w)
{
if(u==n)
return w;
int j;
int ans=; for(j=head[u];j!=-&&ans<=w;j=x[j].next)
{
if(vis[x[j].to]==vis[u]+&&x[j].w)
{
int b=dfs(x[j].to,min(w-ans,x[j].w)); //流进去的有2个限制 min(总流量减去已经流掉的,可以流进去的)
x[j].w-=b;
x[j^].w+=b; //cnt=0 开始 反向边下标=j^1 可以自己试试
ans+=b;
}
}
return ans;
}
int main()
{
int t,ca; scanf("%d",&t);
ca=;
while(t--)
{
scanf("%d%d",&n,&m);
cnt=;
memset(head,-,sizeof(head));
int i,j;
for(i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w); //建边 有反向边
}
int ans=;
while(bfs()) //Dinic bfs+dfs
ans+=dfs(,inf);
printf("Case %d: %d\n",ca++,ans);
} return ;
}
  /*By--MJY*/

网络流 最大流HDU 3549的更多相关文章

  1. 网络流--最大流--HDU 3549 Flow Problem

    题目链接 Problem Description Network flow is a well-known difficult problem for ACMers. Given a graph, y ...

  2. 【网络流#1】hdu 3549 - 最大流模板题

    因为坑了无数次队友 要开始学习网络流了,先从基础的开始,嗯~ 这道题是最大流的模板题,用来测试模板好啦~ Edmonds_Karp模板 with 前向星 时间复杂度o(V*E^2) #include& ...

  3. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

  4. 图论--网络流--最大流 HDU 2883 kebab(离散化)

    Problem Description Almost everyone likes kebabs nowadays (Here a kebab means pieces of meat grilled ...

  5. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  6. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  7. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  8. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  9. Flow Problem HDU - 3549

    Flow Problem HDU - 3549 Network flow is a well-known difficult problem for ACMers. Given a graph, yo ...

随机推荐

  1. 虚拟机VMware怎么完全卸载干净

    虚拟机VMware怎么完全卸载干净 听语音 | 浏览:19929 | 更新:2014-12-21 10:28 | 标签:虚拟机 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师傅高质屏和好师傅 ...

  2. Stunnel使用

     建立加密隧道 使用 Stunnel 建立加密隧道 附件中的 Server 和 Clinet 都是已经配置好了的,只需修改 Server 的 stunnel.conf 的 connect 为实际的ip ...

  3. poj2676 Sudoku

    Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17953   Accepted: 8688   Special ...

  4. Func<T,TResult>泛型委托

    描述: 封装一个具有一个参数并返回TResult参数指定的类型值的方法. 语法: public delegate TResult Func<T,TResult>(T arg); 参数类型: ...

  5. EncryptHelper

    public class EncryptHelper { public static string EncryptMd5Str(string str) { MD5 md5Obj = MD5.Creat ...

  6. 如何撰写PRD

    PRD(Product-Requirement-Document,产品需求文档),这对于任何一个产品经理来说都不会陌生的一个文档,一个PRD是衡量一个产品经理整体思维的标准,一个PRD可以看出一个产品 ...

  7. 字符串截取函数substr()

    substr(参数1,参数2[,参数3]); 该系统函数返回被截后的子字符串,它接受2个必选参数,参数1为要截取的字符串,参数2为截取的开始位置,参数3可选,表示截取长度. 例子:substr(&qu ...

  8. 线程 VS 进程

    线程是指进程内的一个执行单元,也是进程内的可调度实体. 与进程的区别: (1)地址空间:进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间; (2)资源拥有: ...

  9. 主机无法访问虚拟机Linux的apache

    在虚拟机linux里安装了httpd,即appache,启动后,按正常情况在主机是可以用浏览器通过访问虚拟机linux的ip来访问的.如果出现无法访问的情况,解决办法可以参考如下: 这里我的虚拟机联网 ...

  10. wechat开发

    1.easywechat安装 2.weichat打通服务器 function getTest(Request $request){ $token = 'zhenhaokeji'; $data = $r ...