时间复杂度:

常用的时间复杂度有:常数级,对数级,线性级 线性对数级 平方级,立方级别,多项式级别,指数级别,阶乘级别

这里我们主要探讨对数级,线性级,平方级,指数级---为什么不讨论其他的?别的我也不会啊--- 囧

f(x)  ε O(n*n):这里指的是f这个函数的增长速度 不会以后n*n快 这里的x指的是特定的输入

用n来估算x的范围大小

我们先写一段代码。QAQ:

def exp1(a,b):
ans =1
while(b>0):
ans *=a
b -=1
return ans

这个方法是求 a的b次方的值 ?那么如果b=10 做了多少次操作呢  3b+2 也就是32次 那么我们可以得出

f(x)  ε O(3b+2) 但是2好像是不会变的,当数值变大时2就没有意思 所以f(x)  ε O(3b) 当然他就是线性的 我们都写错O(n) ----这就是所谓的线性级

我们在来看看下面的代码:

def exp2(a,b):
if b == 1:
return a
else:return a*exp2(a ,b-1)
print exp2(2,3)

  这里我们用的是递归,同样的我们来看看这个函数执行数跟参数的关系:

t(b) = 3+t(b-1) --->t(b) = 3+3+t(b-2)    我们找到规律就是  t(b) = 3*k+t(b-k) --这里的k 是我们添加的参数

我们知道当b-k=1 的时候就结束了 那么 k = b-1 上述方程式:结果为 3b-2 那么 f(x) ε O(3b-2)也是线性的

那么接着看下面的代码:

def exp3(a,b):
if b == 1:
return a
if (b/2)*2 ==b:
return exp3(a*a,b/2)
else:
return a*exp2(a ,b-1)

  我们在这里做了小小的性能优化 ,如果我们求的是 偶数次方 我们知道 a的4次方等于 a*a的平方

t(b)= 6+t(b/2)--->6+6+t(b/2*2)--->6+6+6+t(b/2*2*2)---6*k+t(b/2的k次方) 我们知道当b/2的k次方=1的时候结束 那么k = log2 b 也就是 O(log)--这里就是对数级

接下来我们看看轻松的

def exp4(a,b):
x = 0
for i in range(a):
for i range(b):
x+=1 return x

很明显 t(b)=(a*b) 也就是O(a*b)---平方级

最后我们来看下指数级: 也许是你最不想看到的情况:

def Towers(size,fromStack,toStack,spareStack):
if size == 1:
print "Move disk from ",fromStack, "to" ,toStack
else:
Towers(size-1,fromStack,spareStack,toStack)
Towers(1,fromStack,toStack,spareStack)
Towers(size-1,spareStack,toStack,fromStack)

  t(b) = 3+2*t(b-1)--->3+3*2+4*t(b-2)-->1*3+2*3+4*3+8*(b-3)

--->3(1+2+4+...2^k-1) +2^k*(b-k)---->O(2^n)

时间复杂度---我又要想起初中数学老师的脸了xxxxx的更多相关文章

  1. D唐纳德和他的数学老师(华师网络赛)(二分匹配,最大流)

    Time limit per test: 1.0 seconds Memory limit: 256 megabytes 唐纳德是一个数学天才.有一天,他的数学老师决定为难一下他.他跟唐纳德说:「现在 ...

  2. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  3. 用初中数学知识撸一个canvas环形进度条

    周末好,今天给大家带来一款接地气的环形进度条组件vue-awesome-progress.近日被设计小姐姐要求实现这么一个环形进度条效果,大体由四部分组成,分别是底色圆环,进度弧,环内文字,进度圆点. ...

  4. canvas基础[一]探究出初中数学知识

    何时用SVG何时用canvas SVG 矢量图,视觉清晰,文件小 <svg viewBox="0 0 100 100"> <circle cx="50& ...

  5. 十分简明易懂的FFT(快速傅里叶变换)

    https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利 ...

  6. 程序员的成长与规划 | 送签名书啦 | StuQ专访foruok

    StuQ(InfoQ的朋友)对我做了一次专访,下面是原文. 福利:送一本签名版<你好哇,程序员>,参与方式在文末.

  7. 对于JAVA课程的期望

    对于JAVA课程的期望 我对于JAVA这门课程最初的了解可能来自于学长学姐的描述,或者是选课指南上简单的课程名称,那个时候的JAVA,对我来说遥远而又陌生,显得那么高大上,但是一转眼自己马上就要结束大 ...

  8. [51NOD1087]1 10 100 1000(规律,二分)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1087 用高中的数列知识就可以推出公式,不难发现f(n)=f(n ...

  9. 四则运算 SPEC 20160911

    本文档随时可能修改,并且没有另行通知. 请确保每一次在开始修改你的代码前,读标题中的日期,如果晚于你上次阅读, 请重读一次. 教师节你去探望初中数学老师,她感叹你当年真是个优秀学生啊,从来不报怨作 业 ...

随机推荐

  1. 网络之Ip地址

    0.0.0.0---255.255.255.255 Ip地址分类(D.E)不对外开放 网络类别 最大网络数 IP地址范围(,唯一的,花钱的) 最大主机数 私有IP地址范围 (做内网ip,不可直接访问公 ...

  2. 05章项目: QuickHit快速击键

    一.项目分析 根据输入速率和正确率将玩家分为不同等级,级别越高,一次显示的字符数越多,玩家正确输入一次的得分也越高.如果玩家在规定时间内完成规定次数的输入,正确率达到规定要求,则玩家升级.玩家最高级别 ...

  3. 自动化工作之自动更新SVN

    任务计划程序 任务计划程序是Window自带的组件 微软文档 http://windows.microsoft.com/zh-cn/windows-vista/automate-tasks-with- ...

  4. 内裤:DataTable转Model

    public class ConvertHelper<T> where T : new() { /// <summary> /// 利用反射和泛型 /// </summa ...

  5. git创建本地分支

    git branch -b newbranch //创建并切换到newbranch分支下 git push origin newbranch //推送到远程仓库的newbranch分支下,没有就创建

  6. git生成ssh key 避免每次push都要输入账号密码

    第一步:生成public/private rsa key pair在命令行中输入ssh-keygen -t rsa -C "your_email@example.com" 默认在这 ...

  7. web cache server方案比较:varnish、squid、nginx

    linux运维中,web cache server方案的部署是一个很重要的环节,选择也有很多种比如:varnish.squid.nginx.下面就对当下常用的这几个web cache server做一 ...

  8. 运维利器-ClusterShell集群管理操作记录

    在运维实战中,如果有若干台数据库服务器,想对这些服务器进行同等动作,比如查看它们当前的即时负载情况,查看它们的主机名,分发文件等等,这个时候该怎么办?一个个登陆服务器去操作,太傻帽了!写个shell去 ...

  9. Eclipse中启用Oracle jdbc logging

    根据自己用的JRE版本, jre1.5选择ojdbc5_g.jar, jre6选择ojdbc6_g.jar, 只有带_g的dirver才输出debug信息. maven 的配置信息: <depe ...

  10. 您的项目引用了最新实体框架;但是,找不到数据链接所需的与版本兼容的实体框架数据库 EF6使用Mysql的技巧

    转载至: http://www.cnblogs.com/Imaigne/p/4153397.html 您的项目引用了最新实体框架:但是,找不到数据链接所需的与版本兼容的实体框架数据库 EF6使用Mys ...