http://www.lydsy.com/JudgeOnline/problem.php?id=3105

并不会QwQ

为什么贪心是正确的。

向小神请教了一个弱智问题(小神好神啊OTZ)

然后就写了一下好写好调的线性基糊弄糊弄。。。

2016-12-21UPD:补一下拟阵的证明:

设拟阵\(M=(S,L)\),S为所有石子数的集合,L为石子数的子集的所有子集异或和非0的集合。

遗传性:显然。。。

交换性:设\(A∈L\),\(B∈L\),且\(|A|<|B|\)。我们需要证明存在\(x∈B-A\),使得\(A∪\{x\}∈L\)。反证法:假设所有\(\{x\}\),A集合加上\(\{x\}\)后存在子集异或和为0,那么A的线性基包含B的线性基。又因为\(|A|<|B|\),所以B的子集数目大于A的子集数目。由鸽巢原理得:一定存在B的两个子集,两个子集各自的异或和都等于A中一个子集的异或和,那么这两个子集的异或和相等,与\(B∈L\)不符,所以得证。

然后直接贪心啦

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int in() {
int k = 0; char c = getchar();
for(; c < '0' || c > '9'; c = getchar());
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k;
} bool flag;
long long ans = 0, sum = 0;
int n, a[103], lb[33], p; int main() {
n = in();
for(int i = 1; i <= n; ++i)
a[i] = in(), sum += a[i];
stable_sort(a + 1, a + n + 1); for(int i = n; i >= 1; --i) {
flag = false;
p = a[i];
for(int j = 30; j >= 0; --j)
if (a[i] >> j & 1)
if (!lb[j]) {
lb[j] = a[i];
flag = true;
break;
} else
a[i] ^= lb[j];
if (!flag) ans += p;
}
printf("%lld\n", ans == sum ? -1 : ans);
return 0;
}

【BZOJ 3150】新Nim游戏的更多相关文章

  1. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  2. 【BZOJ3105】新Nim游戏(线性基)

    [BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...

  3. 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 839  Solved: 490[Submit][Stat ...

  4. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  5. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

  6. 洛谷P4301 [CQOI2013]新Nim游戏

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  7. 洛谷 P4301 [CQOI2013]新Nim游戏 解题报告

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  8. 【bzoj3105】新Nim游戏

    Portal--> bzoj3105 新Nim游戏 Solution 转化一下问题 首先看一下原来的Nim游戏,先手必胜的条件是:每堆数量的异或和不为\(0\) 所以在新的游戏中,如果要保证自己 ...

  9. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  10. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

随机推荐

  1. ExtJs4 笔记(14) layout 布局

    作者:李盼(Lipan)出处:[Lipan] (http://www.cnblogs.com/lipan/)版权声明:本文的版权归作者与博客园共有.转载时须注明本文的详细链接,否则作者将保留追究其法律 ...

  2. AC日记——单词的长度 openjudge 1.7 24

    24:单词的长度 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一行单词序列,相邻单词之间由1个或多个空格间隔,请对应地计算各个单词的长度. 注意,如果有标点符号(如连字符,逗 ...

  3. 命令行构建Unity项目

    自动任务构建 通常可以在桌面双击 Unity 图标,启动程序,但是,也可以通过命令行(例如,MacOS 终端或 Windows Command 窗口)运行程序.若使用这种方式启动 Unity,它将可以 ...

  4. linux下DHCP服务原理总结

    DHCP(全称Dynamic host configuration protocol):动态主机配置协议DHCP工作在OSI的应用层,可以帮助计算机从指定的DHCP服务器获取配置信息的协议.(主要包括 ...

  5. Memcached和Memcache安装(64位win7)

    一.Memcached和Memcache的区别: 网上关于Memcached和Memcache的区别的理解众说纷纭,我个人的理解是: Memcached是一个内存缓存系统,而Memcache是php的 ...

  6. VS清除打开项目时的TFS版本控制提示

    原文:http://blog.useasp.net/archive/2015/12/15/how-to-permanently-remove-vs-project-TFS-source-version ...

  7. QT 数据库编程三

    //mainwindow.cpp #include "mainwindow.h" #include "logindlg.h" #include "sc ...

  8. window.history 和 DWZ 框架

    DWZ框架的ajax请求返回的一般都是一个HTML片段,整个页面是由一个个HTML片段组成的,可以由TAB切换其内容,但是只有一个body和HEAD,一般head 和 菜单栏是不会动的. 今天遇到一个 ...

  9. Mybatis解析动态sql原理分析

    前言 废话不多说,直接进入文章. 我们在使用mybatis的时候,会在xml中编写sql语句. 比如这段动态sql代码: <update id="update" parame ...

  10. FPGA中的INOUT接口和高阻态

    除了输入输出端口,FPGA中还有另一种端口叫做inout端口.如果需要进行全双工通信,是需要两条信道的,也就是说需要使用两个FPGA管脚和外部器件连接.但是,有时候半双工通信就能满足我们的要求,理论上 ...