Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDva4V5A-uuOl84mg5zkTECichHX_AsN0mZalfI9BzDFOeNe-G###

❤ Simple linear regression

1. Y = β0 + β1*X + e

where:

Y - dependent variable (response)

X - independent variable (predictor/explanatory)

β0 - intercept

β1 - slope of the regression line

e - random error

2. Y' = b0 + b1*X

where: Y' - predicted value of Y

e = Y - Y'

3. Least squarea regression minizes the sum of the square of the errors and can be used to estimate b0 and b1.

4. Measuring the fit of the estimated model.

- The varibility of Y

SST (Sum of Squared Total): total variability about the mean, SST = sum((Y - mean(Y))^2);

SSE (Sum of Squared Error): variability about the regression line, SSE = sum(e^2) = sum((Y - mean(Y'))^2), SSE is unexplained varibility;

SSR (Sum of Squares due to Regression): variability that is explained, SSR = sum((Y' - mean(Y))^2), SSR is explained varibility.

Note that SST = SSE + SSR.

- Coefficient of determination

r^2: proportion of explained variability by the regression equation.

0 <= r^2 = 1 - SSE/SST = SSR/SST <= 1

- Correlation coefficient

r: strength of the relationship between X and Y.

-1 <= r <= 1

5. Assumptions in the regression model

Errors are independent, normally distributed, with the mean of zero, with a constant variance.

The assumptions can be tested by using residual analysis.

6. MSE (Mean Squared Error)

Estimation of error variance of the regression equation.

s^2 = MSE = SSE / (n - k - 1)

where:

n - number of observations in the sample

k - number of independent variables

Standard deviation of the regression: s = sqrt(MSE) is also frequently used.

❤ Test the model for significance: F-test

Used to statistically test the null hypothesis H0: there is no linear relationship between Y and X (i.e. β1 = 0).

If p value is low, then we regect H0 and conclude there is linear relationship:

F = MSR / MSE

where: MSR = SSR / k

Good regression model should have significant F value and high r^2 value.

Statistical test can be performed on the regression coefficients. H0: the βs are 0.

For a simple linear regression, the test for regression coefficient gives the same information as the ones given by F-test.

❤ ANOVA tables

The general form of the ANOVA table is helpful for understanding the interrelatedness of error terms.

❤ Multiple regression

Similar to the simple regression model, but there are more than one X in the multiple regression models.

Y' = b0 + b1*X1 + b2*X2 + ... + bn*Xn

Note that if indenpendent variables is correlate to each other, colinearity or multicolinearity will happen. This will cause problems when intepreate variables individually although the overall model estimation may still be good.

Regression analysis的更多相关文章

  1. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  2. Regression Analysis Using Excel

    Regression Analysis Using Excel Setup By default, data analysis add-in is not enabled. Follow the st ...

  3. Functional mechanism: regression analysis under differential privacy_阅读报告

    Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020 ...

  4. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  5. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  6. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  7. Multiple Regression

    Multiple Regression What is multiple regression? Multiple regression is regression analysis with mor ...

  8. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

  9. 7 Types of Regression Techniques

    https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/ What is Regression Anal ...

随机推荐

  1. Android 常见对话框

    1.对话框通知(Dialog Notification) 当你的应用需要显示一个进度条或需要用户对信息进行确认时,可以使用对话框来完成. 下面代码将打开一个如图所示的对话框: public void ...

  2. 10个学习Android开发的网站推荐

    1. Android Developers 作为一个Android开发者,官网的资料当然不可错过,从设计,培训,指南,文档,都不应该错过,在以后的学习过程中慢慢理解体会. 2. Android Gui ...

  3. 你真的了解UITextView吗?

    一:首先查看一下关于UITextView的定义 NS_CLASS_AVAILABLE_IOS(2_0) @interface UITextView : UIScrollView <UITextI ...

  4. React Native学习笔记之1

    1:运行React Native报连接错误解决 解决方式: 在终端进入项目文件里,然后执行:(cd Pods/React; npm run start) 2:组件生命周期介绍 创建阶段 1. getD ...

  5. View的事件体系

    View的滑动 实现手段 优点 缺点 备注 scrollTo/scrollBy 使用简单 只能滑动view的内容,并不会滑动view本身. 且内容超出view本身的布局范围部分的不会显示 不适合有交互 ...

  6. 扫描项目里没有使用的图片mac工具,删除没有使用的图片以减小包的体积

    [链接]netyouli/WHC_ScanUnreferenceImageToolhttps://github.com/netyouli/WHC_ScanUnreferenceImageTool

  7. 小试ildasm,ilasm,ilspy

    选择了微耕的软件(为什么选择它,因为微耕的二次开发实在太牛了,只给文档,一切技术问题都不回答.文档也是只公开基本的东西) 第一个功能:换文字 第二个功能:插入一个新的程序集,在做某些事情前先做我想做的 ...

  8. HTML5 画布canvas元素

    HTML5的canvas元素以及随其而来的编程接口Canvas API应用前景极为广泛.简单地说,canvas元素能够在网页中创建一块矩形区域,这块矩形区域可以成为画布,这其中可以绘制各种图形.可别小 ...

  9. WeX5开源免费跨端开发工具-html5 app开发就用WeX5

    http://www.wex5.com/wex5/?utm_source=Baidu-0815

  10. 6、软件配置工程师要阅读的书籍 - IT软件人员书籍系列文章

    软件配置管理工程师的工作也是贯穿整个项目过程的.其主要针对项目中的各种文档.技术源码等等进行归档控制.一般的配置项比如需求说明书,概要设计,详细设计,测试文档,用户手册等,还有源代码管理,数据库文档文 ...