Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDva4V5A-uuOl84mg5zkTECichHX_AsN0mZalfI9BzDFOeNe-G###

❤ Simple linear regression

1. Y = β0 + β1*X + e

where:

Y - dependent variable (response)

X - independent variable (predictor/explanatory)

β0 - intercept

β1 - slope of the regression line

e - random error

2. Y' = b0 + b1*X

where: Y' - predicted value of Y

e = Y - Y'

3. Least squarea regression minizes the sum of the square of the errors and can be used to estimate b0 and b1.

4. Measuring the fit of the estimated model.

- The varibility of Y

SST (Sum of Squared Total): total variability about the mean, SST = sum((Y - mean(Y))^2);

SSE (Sum of Squared Error): variability about the regression line, SSE = sum(e^2) = sum((Y - mean(Y'))^2), SSE is unexplained varibility;

SSR (Sum of Squares due to Regression): variability that is explained, SSR = sum((Y' - mean(Y))^2), SSR is explained varibility.

Note that SST = SSE + SSR.

- Coefficient of determination

r^2: proportion of explained variability by the regression equation.

0 <= r^2 = 1 - SSE/SST = SSR/SST <= 1

- Correlation coefficient

r: strength of the relationship between X and Y.

-1 <= r <= 1

5. Assumptions in the regression model

Errors are independent, normally distributed, with the mean of zero, with a constant variance.

The assumptions can be tested by using residual analysis.

6. MSE (Mean Squared Error)

Estimation of error variance of the regression equation.

s^2 = MSE = SSE / (n - k - 1)

where:

n - number of observations in the sample

k - number of independent variables

Standard deviation of the regression: s = sqrt(MSE) is also frequently used.

❤ Test the model for significance: F-test

Used to statistically test the null hypothesis H0: there is no linear relationship between Y and X (i.e. β1 = 0).

If p value is low, then we regect H0 and conclude there is linear relationship:

F = MSR / MSE

where: MSR = SSR / k

Good regression model should have significant F value and high r^2 value.

Statistical test can be performed on the regression coefficients. H0: the βs are 0.

For a simple linear regression, the test for regression coefficient gives the same information as the ones given by F-test.

❤ ANOVA tables

The general form of the ANOVA table is helpful for understanding the interrelatedness of error terms.

❤ Multiple regression

Similar to the simple regression model, but there are more than one X in the multiple regression models.

Y' = b0 + b1*X1 + b2*X2 + ... + bn*Xn

Note that if indenpendent variables is correlate to each other, colinearity or multicolinearity will happen. This will cause problems when intepreate variables individually although the overall model estimation may still be good.

Regression analysis的更多相关文章

  1. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  2. Regression Analysis Using Excel

    Regression Analysis Using Excel Setup By default, data analysis add-in is not enabled. Follow the st ...

  3. Functional mechanism: regression analysis under differential privacy_阅读报告

    Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020 ...

  4. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  5. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  6. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  7. Multiple Regression

    Multiple Regression What is multiple regression? Multiple regression is regression analysis with mor ...

  8. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

  9. 7 Types of Regression Techniques

    https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/ What is Regression Anal ...

随机推荐

  1. 移动Web开发(一)

    1.浅谈Web标准 降低开发复杂度,覆盖的技术层面十分广泛,技术标准化. 以HTML为核心,扩展出几个大类的技术标准: a.程序访问: ECMAScript(ES) 3 . ES 5 . ES ham ...

  2. 高仿精仿手机版QQ空间应用源码

    说明:本次QQ空间更新了以前非常基础的代码 更新内容一 更新了登陆界面二  增加了输入时密码时和登陆成功后播放音频的效果三 增加了导航条渐隐的效果(和真实QQ空间的导航条一样,首先透明,当tablev ...

  3. 【代码笔记】iOS-读取一段文字

    一,效果图. 二,工程图. 三,代码. RootViewController.m #import "RootViewController.h" @interface RootVie ...

  4. 【读书笔记】iOS网络-Web Service协议与风格

    协议指的是在与其它系统交换结构化信息时所要遵循的一套格式,过程与规则.此外,协议定义了在传输过程中所要使用的数据格式.这样,接收系统就能正确地解释结构化信息并做出正应的回应. 1,简单对象访问协议. ...

  5. 安卓--selector简单使用

    selector ---选择器 在App的使用中经常能看到selector的身影 如:一个按键看上去白色或者其它颜色,可能是一张图片 按下去又显示其它的颜色或者另外一张图片 这里使用shape配合使用 ...

  6. Android 自定义控件(一)

    本文用一个简单的例子来说明一下自定义控件的步骤实现,自定义控件有几种实现类型,分别为继承自view完全自定义,继承现有的 控件实现特定效果,继承viewgroup实现布局类等: 本文研究的是继承自vi ...

  7. eclipse插件汇总

    subclipse http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA 话说eclipse组织也出了一个svn的插件,但 ...

  8. js中Prototype属性解释及常用方法

    1.prototype的定义 javascript中的每个对象都有prototype属性,Javascript中对象的prototype属性的解释是:返回对象类型原型的引用. 每一个构造函数都有一个属 ...

  9. SQL Server 2012实施与管理实战指南(笔记)——Ch3Alwayson可用组

    3.AlwaysOn可用组 Alwayson支持的,是一个可用性组,每个可用性组是包含了多个用户数据库的容器,可用性组内的数据库可以作为一个整体进行故障转移. AlwaysOn关键特性: 一.类似集群 ...

  10. 0005 《SQL必知必会》笔记01-SELECT语句

    1.SELECT基本语句: SELECT 字段名1,···,字段名n FROM 表名 2.检索所有字段,用"*"替换字段名,这会导致效率低下 SELECT * FROM 表名; 3 ...